Suppr超能文献

利用关联液体池透射电子显微镜和同步辐射理解电沉积铂镍纳米颗粒薄膜的生长

Understanding the Growth of Electrodeposited PtNi Nanoparticle Films Using Correlated Liquid Cell Transmission Electron Microscopy and Synchrotron Radiation.

作者信息

Parlinska-Wojtan Magdalena, Tarnawski Tomasz Roman, Depciuch Joanna, De Marco Maria Letizia, Sobczak Kamil, Matlak Krzysztof, Pawlyta Mirosława, Schaeublin Robin E, Chee See Wee

机构信息

Institute of Nuclear Physics Polish Academy of Sciences, PL-31-342 Krakow, Poland.

Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland.

出版信息

Nano Lett. 2024 Oct 9;24(40):12361-12367. doi: 10.1021/acs.nanolett.4c02228. Epub 2024 Aug 15.

Abstract

Electrodeposition is a versatile method for synthesizing nanostructured films, but controlling the morphology of films containing two or more elements requires a detailed understanding of the deposition process. We used liquid cell transmission electron microscopy to follow the electrodeposition of PtNi nanoparticle films on a carbon electrode during cyclic voltammetry. These observations show that the film thickness increases with each cycle, and by the fourth cycle, branched and porous structures could be deposited. Synchrotron studies using transmission X-ray microscopy further revealed that Ni was deposited in the oxide phase. studies of bulk electrodeposited PtNi nanoparticle films indicated the number of cycles and the scanning rate were the most influential parameters, resulting in a different thickness, a different homogeneity, a different nanoparticle size, and a different surface structure, while the precursor concentration did not have a significant influence. By varying the potential range, we were able to obtain films with different elemental compositions.

摘要

电沉积是一种用于合成纳米结构薄膜的通用方法,但要控制包含两种或更多元素的薄膜的形态,需要对沉积过程有详细的了解。我们使用液体池透射电子显微镜在循环伏安法期间跟踪碳电极上PtNi纳米颗粒薄膜的电沉积过程。这些观察结果表明,薄膜厚度随每个循环增加,到第四个循环时,可以沉积出分支状和多孔结构。使用透射X射线显微镜的同步加速器研究进一步表明,镍沉积在氧化物相中。对块状电沉积PtNi纳米颗粒薄膜的研究表明,循环次数和扫描速率是最有影响的参数,会导致不同的厚度、不同的均匀性、不同的纳米颗粒尺寸和不同的表面结构,而前驱体浓度没有显著影响。通过改变电位范围,我们能够获得具有不同元素组成的薄膜。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d89/11468670/ca76a6a35ff8/nl4c02228_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验