Suppr超能文献

通过调整电解质化学性质实现锂离子电池在快速运行条件下的稳定运行。

Enabling Stable Operation of Lithium-Ion Batteries under Fast-Operating Conditions by Tuning the Electrolyte Chemistry.

作者信息

Cui Zehao, Liu Chen, Manthiram Arumugam

机构信息

Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.

出版信息

Adv Mater. 2024 Oct;36(41):e2409272. doi: 10.1002/adma.202409272. Epub 2024 Aug 15.

Abstract

Inferior fast-charging and low-temperature performances remain a hurdle for lithium-ion batteries. Overcoming this hurdle is extremely challenging primarily due to the low conductivity of commercial ethylene carbonate (EC)-based electrolytes and the formation of undesirable solid electrolyte interphases with poor Li-ion diffusion kinetics. Here, a series of EC-free fast-charging electrolytes (FCEs) by incorporating a fluorinated ester, methyl trifluoroacetate (MTFA), as a special cosolvent into a practically viable LiPF-dimethyl carbonate-fluoroethylene carbonate system, is reported. With a solvent-dominated solvation structure, MTFA facilitates the formation of thin, yet robust, interphases on both the cathode and anode. Commercial 1 Ah graphite|LiNiMnCoO pouch cells filled with the FCE exhibit ≈80% capacity retention over 3000 cycles at 3 C and 4 C (15 min) charging rates in the full range of 0-100% state-of-charge. Moreover, even at a low operating temperature of -20 °C, the 1 Ah cell retains a high capacity of 0.65 Ah at a 2 C discharge rate and displays virtually no capacity fade on cycling at a C/5 rate. The work highlights the power of electrolyte design in achieving extra-fast-charging and low-temperature performances.

摘要

快速充电性能欠佳和低温性能不佳仍是锂离子电池面临的一大障碍。克服这一障碍极具挑战性,主要原因在于商用碳酸亚乙酯(EC)基电解质的电导率较低,且会形成具有不良锂离子扩散动力学的不理想固体电解质界面。在此,报道了一系列无EC的快速充电电解质(FCE),通过将氟化酯三氟乙酸甲酯(MTFA)作为一种特殊共溶剂加入到实际可行的LiPF - 碳酸二甲酯 - 氟代碳酸乙烯酯体系中。MTFA具有以溶剂为主导的溶剂化结构,有助于在阴极和阳极上形成薄而坚固的界面。充满FCE的商用1 Ah石墨|LiNiMnCoO软包电池在0 - 100%充电状态范围内,于3 C和4 C(15分钟)充电速率下经过3000次循环后容量保持率约为80%。此外,即使在-20°C的低工作温度下,1 Ah电池在2 C放电速率下仍保持0.65 Ah的高容量,并且在C/5速率下循环时几乎没有容量衰减。这项工作突出了电解质设计在实现超快充电和低温性能方面的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验