Suppr超能文献

推挽式电解质设计策略助力高压低温锂金属电池

Push-Pull Electrolyte Design Strategy Enables High-Voltage Low-Temperature Lithium Metal Batteries.

作者信息

Cui Zhuangzhuang, Wang Dazhuang, Guo Jiasen, Nian Qingshun, Ruan Digen, Fan Jiajia, Ma Jun, Li Liang, Dong Qi, Luo Xuan, Wang Zihong, Ou Xing, Cao Ruiguo, Jiao Shuhong, Ren Xiaodi

机构信息

Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.

Engineering Research Center of the Ministry of Education for Advanced Battery Materials, School of Metallurgy and Environment, Central South University, No. 932 South Lushan Road, Changsha, Hunan 410083, China.

出版信息

J Am Chem Soc. 2024 Oct 9;146(40):27644-27654. doi: 10.1021/jacs.4c09027. Epub 2024 Sep 27.

Abstract

Lithium (Li) metal batteries hold significant promise in elevating energy density, yet their performance at ultralow temperatures remains constrained by sluggish charge transport kinetics and the formation of unstable interphases. In conventional electrolyte systems, lithium ions are tightly locked in the solvation structure, thereby engendering difficulty in the desolvation process and further exacerbating solvent decomposition. Herein, we propose a new push-pull electrolyte design strategy, utilizing molecular electrostatic potential (ESP) screening to identify 2,2-difluoroethyl trifluoromethanesulfonate (DTF) as an optimal cosolvent. Importantly, DTF exhibits a moderate ESP minimum (-21.0 kcal mol) to strike a balance between overly strong and overly weak Li ion affinity, which allows the sulfonyl group to effectively pull Li ions without disrupting the anion-rich solvation structure. Simultaneously, the difluoromethyl group, with a high ESP maximum (37.3 kcal mol), pushes solvent molecules via competitive hydrogen bonding. This design reconstructs existing solvation structures and expedites Li ion desolvation. Furthermore, fluorinated DTF demonstrates excellent stability at elevated voltage and facilitates the formation of robust inorganic-rich interphases. Impressively, rapid charge transfer kinetics can be achieved employing designed electrolyte, and the LiNiMnCoO (NMC811)||Li cells demonstrate excellent charge-discharge cycling stability with a high capacity exceeding 153 mAh g even at -40 °C, retaining over 93% of initial capacity after 100 cycles under a 4.8 V charging cutoff. This work provides insights into the design of low-temperature electrolytes with a wide electrochemical window, advancing the development of batteries for extreme conditions.

摘要

锂(Li)金属电池在提高能量密度方面具有巨大潜力,但其在超低温下的性能仍受缓慢的电荷传输动力学和不稳定界面相形成的限制。在传统电解质体系中,锂离子被紧密锁定在溶剂化结构中,导致去溶剂化过程困难,并进一步加剧溶剂分解。在此,我们提出一种新的推挽式电解质设计策略,利用分子静电势(ESP)筛选确定2,2-二氟乙基三氟甲磺酸酯(DTF)为最佳共溶剂。重要的是,DTF表现出适度的ESP最小值(-21.0 kcal mol),以在过强和过弱的锂离子亲和力之间取得平衡,这使得磺酰基能够有效地吸引锂离子而不破坏富含阴离子的溶剂化结构。同时,具有高ESP最大值(37.3 kcal mol)的二氟甲基通过竞争性氢键推动溶剂分子。这种设计重构了现有的溶剂化结构并加速锂离子去溶剂化。此外,氟化的DTF在高电压下表现出优异的稳定性,并有助于形成坚固的富含无机物的界面相。令人印象深刻的是,采用设计的电解质可以实现快速的电荷转移动力学,并且LiNiMnCoO(NMC811)||Li电池即使在-40°C下也表现出优异的充放电循环稳定性,高容量超过153 mAh g,在4.8 V充电截止电压下经过100次循环后仍保留超过93%的初始容量。这项工作为具有宽电化学窗口的低温电解质设计提供了见解,推动了极端条件下电池的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验