Suppr超能文献

基于大规模量子化学数据的机器学习分子力学力场

Machine-learned molecular mechanics force fields from large-scale quantum chemical data.

作者信息

Takaba Kenichiro, Friedman Anika J, Cavender Chapin E, Behara Pavan Kumar, Pulido Iván, Henry Michael M, MacDermott-Opeskin Hugo, Iacovella Christopher R, Nagle Arnav M, Payne Alexander Matthew, Shirts Michael R, Mobley David L, Chodera John D, Wang Yuanqing

机构信息

Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center New York NY 10065 USA

Pharmaceuticals Research Center, Advanced Drug Discovery, Asahi Kasei Pharma Corporation Shizuoka 410-2321 Japan

出版信息

Chem Sci. 2024 Jun 26;15(32):12861-12878. doi: 10.1039/d4sc00690a. eCollection 2024 Aug 14.

Abstract

The development of reliable and extensible molecular mechanics (MM) force fields-fast, empirical models characterizing the potential energy surface of molecular systems-is indispensable for biomolecular simulation and computer-aided drug design. Here, we introduce a generalized and extensible machine-learned MM force field, espaloma-0.3, and an end-to-end differentiable framework using graph neural networks to overcome the limitations of traditional rule-based methods. Trained in a single GPU-day to fit a large and diverse quantum chemical dataset of over 1.1 M energy and force calculations, espaloma-0.3 reproduces quantum chemical energetic properties of chemical domains highly relevant to drug discovery, including small molecules, peptides, and nucleic acids. Moreover, this force field maintains the quantum chemical energy-minimized geometries of small molecules and preserves the condensed phase properties of peptides and folded proteins, self-consistently parametrizing proteins and ligands to produce stable simulations leading to highly accurate predictions of binding free energies. This methodology demonstrates significant promise as a path forward for systematically building more accurate force fields that are easily extensible to new chemical domains of interest.

摘要

可靠且可扩展的分子力学(MM)力场——用于表征分子系统势能面的快速经验模型——的发展对于生物分子模拟和计算机辅助药物设计而言不可或缺。在此,我们介绍一种广义且可扩展的机器学习MM力场espaloma - 0.3,以及一个使用图神经网络的端到端可微框架,以克服传统基于规则方法的局限性。在单GPU日训练以拟合超过110万个能量和力计算的庞大且多样的量子化学数据集后,espaloma - 0.3能够重现与药物发现高度相关的化学结构域的量子化学能量性质,包括小分子、肽和核酸。此外,该力场保持小分子的量子化学能量最小化几何结构,并保留肽和折叠蛋白的凝聚相性质,自洽地对蛋白质和配体进行参数化以产生稳定的模拟,从而对结合自由能进行高度准确的预测。作为系统构建更精确且易于扩展到新感兴趣化学领域的力场的前进道路,这种方法展现出巨大的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1713/11322960/6c8d99eefadf/d4sc00690a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验