Suppr超能文献

别让你的分析功亏一篑:随机种子对基于机器学习的因果推断的影响。

Don't Let Your Analysis Go to Seed: On the Impact of Random Seed on Machine Learning-based Causal Inference.

机构信息

From the Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA.

Department of Medicine, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA.

出版信息

Epidemiology. 2024 Nov 1;35(6):764-778. doi: 10.1097/EDE.0000000000001782. Epub 2024 Aug 16.

Abstract

Machine learning techniques for causal effect estimation can enhance the reliability of epidemiologic analyses, reducing their dependence on correct model specifications. However, the stochastic nature of many machine learning algorithms implies that the results derived from such approaches may be influenced by the random seed that is set before model fitting. In this work, we highlight the substantial influence of random seeds on a popular approach for machine learning-based causal effect estimation, namely doubly robust estimators. We illustrate that varying seeds can yield divergent scientific interpretations of doubly robust estimates produced from the same dataset. We propose techniques for stabilizing results across random seeds and, through an extensive simulation study, demonstrate that these techniques effectively neutralize seed-related variability without compromising the statistical efficiency of the estimators. Based on these findings, we offer practical guidelines to minimize the influence of random seeds in real-world applications, and we encourage researchers to explore the variability due to random seeds when implementing any method that involves random steps.

摘要

机器学习技术可用于因果效应估计,从而提高流行病学分析的可靠性,减少对正确模型规范的依赖。然而,许多机器学习算法的随机性意味着,从这些方法得出的结果可能会受到模型拟合前设置的随机种子的影响。在这项工作中,我们强调了随机种子对基于机器学习的因果效应估计的一种流行方法——双重稳健估计器的重大影响。我们表明,不同的种子会导致从同一数据集产生的双重稳健估计的科学解释产生分歧。我们提出了在随机种子之间稳定结果的技术,并通过广泛的模拟研究证明,这些技术可以有效地消除与种子相关的变异性,而不会影响估计器的统计效率。基于这些发现,我们提供了一些实用的指南,以最小化随机种子在实际应用中的影响,并鼓励研究人员在实施任何涉及随机步骤的方法时,探索由于随机种子引起的变异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验