Suppr超能文献

用于估计和比较使用抗生素治疗腹泻病的临床规则的机器学习。

Machine learning for estimating and comparing clinical rules for treating diarrheal illness with antibiotics.

作者信息

Codi Allison, Kim Sara, McQuade Elizabeth Rogawski, Benkeser David

机构信息

Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Georgia, USA.

Department of Epidemiology, Rollins School of Public Health, Emory University, Georgia, USA.

出版信息

medRxiv. 2025 Jan 12:2025.01.10.25320357. doi: 10.1101/2025.01.10.25320357.

Abstract

Acute diarrheal disease is one of the leading causes of death in children under age 5, disproportionately impacting children in low-resource settings. Many of these cases are caused by bacteria and therefore could respond to antibiotic treatment; however, the benefits of widely prescribing antibiotics must be weighed against the risks for the emergence of microbial resistance. These challenges present the opportunity for developing individualized treatment guidelines for diarrheal disease. In this study, we utilize a framework for the creation and evaluation of individualized treatment rules that leverage diagnostic and other clinical information to recommend antibiotic treatment to children with watery diarrhea. In contrast to many applications of pipelines for creating and evaluating treatment rules, we (i) explicitly consider creating rules that limit the proportion of children treated under a rule, to limit risks for overtreatment and the emergence of microbial resistance and (ii) propose methods to compare the performance of rules based on different sets of input covariates, which allows for quantification of the impact of measuring additional diagnostic biomarkers in clinical settings. We use a nested cross validation procedure that makes use of ensemble machine learning and doubly-robust estimation approach to derive, evaluate, and compare rules. We demonstrate that our proposed method yields appropriate inference in a realistic simulation study and apply our method to a real-data analysis of the AntiBiotics for Children with severe Diarrhea (ABCD) trial.

摘要

急性腹泻病是5岁以下儿童的主要死因之一,对资源匮乏地区的儿童影响尤为严重。这些病例中有许多是由细菌引起的,因此可能对抗生素治疗有反应;然而,广泛使用抗生素的益处必须与微生物耐药性出现的风险相权衡。这些挑战为制定腹泻病个体化治疗指南提供了契机。在本研究中,我们利用一个框架来创建和评估个体化治疗规则,该框架利用诊断和其他临床信息为水样腹泻儿童推荐抗生素治疗。与许多用于创建和评估治疗规则的流程应用不同,我们(i)明确考虑创建限制在某一规则下接受治疗儿童比例的规则,以限制过度治疗风险和微生物耐药性的出现,并且(ii)提出方法来比较基于不同输入协变量集的规则性能,这使得在临床环境中测量额外诊断生物标志物的影响得以量化。我们使用一种嵌套交叉验证程序,该程序利用集成机器学习和双重稳健估计方法来推导、评估和比较规则。我们证明,在一项现实的模拟研究中,我们提出的方法能得出恰当的推断,并将我们的方法应用于重度腹泻儿童抗生素治疗(ABCD)试验的真实数据分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f747/11741478/e4a09636af3f/nihpp-2025.01.10.25320357v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验