Zhang Xiaohui, Landsness Eric C, Miao Hanyang, Chen Wei, Tang Michelle, Brier Lindsey M, Culver Joseph P, Lee Jin-Moo, Anastasio Mark A
ArXiv. 2024 Jan 16:arXiv:2401.08098v1.
Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators allows for spatiotemporal recordings of neuronal activity in mice. When applied to the study of sleep, WFCI data are manually scored into the sleep states of wakefulness, non-REM (NREM) and REM by use of adjunct EEG and EMG recordings. However, this process is time-consuming, invasive and often suffers from low inter- and intra-rater reliability. Therefore, an automated sleep state classification method that operates on spatiotemporal WFCI data is desired.
A hybrid network architecture consisting of a convolutional neural network (CNN) to extract spatial features of image frames and a bidirectional long short-term memory network (BiLSTM) with attention mechanism to identify temporal dependencies among different time points was proposed to classify WFCI data into states of wakefulness, NREM and REM sleep.
Sleep states were classified with an accuracy of 84% and Cohen's kappa of 0.64. Gradient-weighted class activation maps revealed that the frontal region of the cortex carries more importance when classifying WFCI data into NREM sleep while posterior area contributes most to the identification of wakefulness. The attention scores indicated that the proposed network focuses on short- and long-range temporal dependency in a state-specific manner.
On a 3-hour WFCI recording, the CNN-BiLSTM achieved a kappa of 0.67, comparable to a kappa of 0.65 corresponding to the human EEG/EMG-based scoring.
The CNN-BiLSTM effectively classifies sleep states from spatiotemporal WFCI data and will enable broader application of WFCI in sleep.
利用基因编码钙指示剂进行的宽视野钙成像(WFCI)能够对小鼠神经元活动进行时空记录。当应用于睡眠研究时,WFCI数据需借助辅助脑电图(EEG)和肌电图(EMG)记录,手动划分为清醒、非快速眼动(NREM)和快速眼动(REM)睡眠状态。然而,这一过程耗时、具有侵入性,且评分者间和评分者内的可靠性往往较低。因此,需要一种基于时空WFCI数据的自动睡眠状态分类方法。
提出了一种混合网络架构,该架构由一个用于提取图像帧空间特征的卷积神经网络(CNN)和一个带有注意力机制的双向长短期记忆网络(BiLSTM)组成,用于识别不同时间点之间的时间依赖性,从而将WFCI数据分类为清醒、NREM和REM睡眠状态。
睡眠状态分类的准确率为84%,科恩kappa系数为0.64。梯度加权类激活图显示,在将WFCI数据分类为NREM睡眠时,皮质的额叶区域更为重要,而后部区域对清醒状态的识别贡献最大。注意力分数表明,所提出的网络以特定状态的方式关注短期和长期的时间依赖性。
在一段3小时的WFCI记录中,CNN-BiLSTM的kappa系数为0.67,与基于人类EEG/EMG评分的0.65相当。
CNN-BiLSTM能够有效地从时空WFCI数据中分类睡眠状态,并将使WFCI在睡眠研究中得到更广泛的应用。