Department of Oncology, Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, CH-1005, Switzerland.
Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, University of Lausanne, Quartier UNIL-Sorge, Bâtiment Amphipole, Lausanne, CH-1015, Switzerland.
Adv Sci (Weinh). 2024 Oct;11(40):e2405949. doi: 10.1002/advs.202405949. Epub 2024 Aug 19.
Approaches to analyze and cluster T-cell receptor (TCR) repertoires to reflect antigen specificity are critical for the diagnosis and prognosis of immune-related diseases and the development of personalized therapies. Sequence-based approaches showed success but remain restrictive, especially when the amount of experimental data used for the training is scarce. Structure-based approaches which represent powerful alternatives, notably to optimize TCRs affinity toward specific epitopes, show limitations for large-scale predictions. To handle these challenges, TCRpcDist is presented, a 3D-based approach that calculates similarities between TCRs using a metric related to the physico-chemical properties of the loop residues predicted to interact with the epitope. By exploiting private and public datasets and comparing TCRpcDist with competing approaches, it is demonstrated that TCRpcDist can accurately identify groups of TCRs that are likely to bind the same epitopes. Importantly, the ability of TCRpcDist is experimentally validated to determine antigen specificities (neoantigens and tumor-associated antigens) of orphan tumor-infiltrating lymphocytes (TILs) in cancer patients. TCRpcDist is thus a promising approach to support TCR repertoire analysis and TCR deorphanization for individualized treatments including cancer immunotherapies.
分析和聚类 T 细胞受体 (TCR) 库以反映抗原特异性的方法对于免疫相关疾病的诊断和预后以及个性化治疗的发展至关重要。基于序列的方法显示出了成功,但仍然具有局限性,特别是当用于训练的实验数据量较少时。基于结构的方法是一种强大的替代方法,特别是用于优化 TCR 与特定表位的亲和力,但对于大规模预测存在局限性。为了应对这些挑战,提出了 TCRpcDist,这是一种基于 3D 的方法,使用与预测与表位相互作用的环残基的物理化学性质相关的度量标准来计算 TCR 之间的相似性。通过利用私人和公共数据集并将 TCRpcDist 与竞争方法进行比较,证明 TCRpcDist 可以准确识别可能与相同表位结合的 TCR 组。重要的是,TCRpcDist 的能力通过实验验证来确定癌症患者中孤儿肿瘤浸润淋巴细胞 (TIL) 的抗原特异性(新抗原和肿瘤相关抗原)。因此,TCRpcDist 是一种有前途的方法,可支持 TCR 库分析和 TCR 去孤儿化,用于包括癌症免疫疗法在内的个体化治疗。