Suppr超能文献

基于YOLOv5的印刷电路板组件缺陷检测

Defect detection of printed circuit board assembly based on YOLOv5.

作者信息

Shen Minghui, Liu Yujie, Chen Jing, Ye Kangqi, Gao Heyuan, Che Jie, Wang Qingyang, He Hao, Liu Jian, Wang Yan, Jiang Ye

机构信息

School of Computing and Information Technology, Hefei University of Technology, Xuancheng, 242000, China.

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.

出版信息

Sci Rep. 2024 Aug 20;14(1):19287. doi: 10.1038/s41598-024-70176-1.

Abstract

Detection of printed circuit board assembly (PCBA) defects is crucial for improving the efficiency of PCBA manufacturing. This paper proposes PCBA-YOLO, a YOLOv5-based method that can effectively increase the accuracy of PCBA defect detection. First, the spatial pyramid pooling module with cross-stage partial structure is replaced in the neck network of YOLOv5 to capture the resolution features at multiple scales. Second, large kernel convolution is introduced in the backbone network to obtain larger effective receptive fields while reducing computational overhead. Finally, an SIoU loss function that considers the angular cost is utilized to enhance the convergence speed of the model. In addition, an assembled PCBA defect detection dataset named PCBA-DET is created in this paper, containing the corresponding defect categories and annotations of defect locations. The experimental results on the PCB defect dataset demonstrate that the improved method has lower loss values and higher accuracy. Evaluated on the PCBA-DET dataset, the mean average precision reaches 97.3 , achieving a real-time detection performance of 322.6 frames per second, which considers both the detection accuracy and the model size compared to the YOLO series of detection networks. The source code and PCBA-DET dataset can be accessed at https://github.com/ismh16/PCBA-Dataset .

摘要

印刷电路板组件(PCBA)缺陷检测对于提高PCBA制造效率至关重要。本文提出了PCBA - YOLO,一种基于YOLOv5的方法,它可以有效提高PCBA缺陷检测的准确率。首先,在YOLOv5的颈部网络中替换具有跨阶段局部结构的空间金字塔池化模块,以捕获多尺度的分辨率特征。其次,在主干网络中引入大核卷积,以获得更大的有效感受野,同时减少计算开销。最后,使用考虑角度代价的SIoU损失函数来提高模型的收敛速度。此外,本文创建了一个名为PCBA - DET的组装PCBA缺陷检测数据集,包含相应的缺陷类别和缺陷位置注释。在PCB缺陷数据集上的实验结果表明,改进后的方法具有更低的损失值和更高的准确率。在PCBA - DET数据集上进行评估,平均精度达到97.3 ,实现了每秒322.6帧的实时检测性能,与YOLO系列检测网络相比,兼顾了检测精度和模型大小。源代码和PCBA - DET数据集可在https://github.com/ismh16/PCBA-Dataset上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11335752/b0b940620e8d/41598_2024_70176_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验