Suppr超能文献

通过光诱导的针尖状胶体组装对多尺度生物分析物进行无标记和液相 SERS 检测。

Label-free and liquid state SERS detection of multi-scaled bioanalytes via light-induced pinpoint colloidal assembly.

机构信息

Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.

Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea.

出版信息

Biosens Bioelectron. 2024 Nov 15;264:116663. doi: 10.1016/j.bios.2024.116663. Epub 2024 Aug 12.

Abstract

Surface-enhanced Raman scattering (SERS) has been extensively applied to detect complex analytes due to its ability to enhance the fingerprint signals of molecules around nanostructured metallic surfaces. Thus, it is essential to design SERS-active nanostructures with abundant electromagnetic hotspots in a probed volume according to the dimensions of the analytes, as the analytes must be located in their hotspots for maximum signal enhancement. Herein, we demonstrate a simple method for detecting robust SERS signals from multi-scaled bioanalytes, regardless of their dimensions in the liquid state, through a photothermally driven co-assembly with colloidal plasmonic nanoparticles as signal enhancers. Under resonant light illumination, plasmonic nanoparticles and analytes in the solution quickly assemble at the focused surface area by convective movements induced by the photothermal heating of the plasmonic nanoparticles without any surface modification. Such collective assemblies of plasmonic nanoparticles and analytes were optimized by varying the optical density and surface charge of the nanoparticles, the viscosity of the solvent, and the light illumination time to maximize the SERS signals. Using these light-induced co-assemblies, the intrinsic SERS signals of small biomolecules can be detected down to nanomolar concentrations based on their fingerprint spectra. Furthermore, large-sized biomarkers, such as viruses and exosomes, were successfully detected without labels, and the complexity of the collected spectra was statistically analyzed using t-distributed stochastic neighbor embedding combined with support vector machine (t-SNE + SVM). The proposed method is expected to provide a robust and convenient method to sensitively detect biologically and environmentally relevant analytes at multiple scales in liquid samples.

摘要

表面增强拉曼散射(SERS)因其能够增强纳米结构金属表面周围分子的指纹信号,因此被广泛应用于检测复杂分析物。因此,根据分析物的尺寸,在探测体积内设计具有丰富电磁热点的 SERS 活性纳米结构至关重要,因为分析物必须位于其热点位置才能获得最大的信号增强。在此,我们展示了一种通过光热驱动共组装来检测多尺度生物分析物的稳健 SERS 信号的简单方法,无论其在液体状态下的尺寸如何,该方法使用胶体等离子体纳米粒子作为信号增强剂。在共振光照射下,等离子体纳米粒子和溶液中的分析物通过等离子体纳米粒子的光热加热引起的对流运动迅速在聚焦的表面区域组装,而无需任何表面修饰。通过改变纳米粒子的光学密度和表面电荷、溶剂的粘度和光照射时间来优化这种等离子体纳米粒子和分析物的集体组装,以最大化 SERS 信号。使用这些光诱导的共组装,可以根据其指纹光谱检测低至纳摩尔浓度的小分子的固有 SERS 信号。此外,无需标记即可成功检测到大尺寸生物标志物,如病毒和外泌体,并使用 t 分布随机邻域嵌入结合支持向量机(t-SNE+SVM)对收集的光谱的复杂性进行统计分析。该方法有望提供一种稳健且方便的方法,用于在液体样品中以多尺度灵敏地检测生物和环境相关的分析物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验