Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China.
ACS Nano. 2024 Sep 3;18(35):24469-24483. doi: 10.1021/acsnano.4c07856. Epub 2024 Aug 22.
Bacterial infections claim millions of lives every year, with the escalating menace of microbial antibiotic resistance compounding this global crisis. Nanozymes, poised as prospective substitutes for antibiotics, present a significant frontier in antibacterial therapy, yet their precise enzymatic origins remain elusive. With the continuous development of nanozymes, the applications of elemental N-modulated nanozymes have spanned multiple fields, including sensing and detection, infection therapy, cancer treatment, and pollutant degradation. The introduction of nitrogen into nanozymes not only broadens their application range but also holds significant importance for the design of catalysts in biomedical research. The synergistic interplay between W and N induces pivotal alterations in electronic configurations, endowing tungsten nitride (WN) with a peroxidase-like functionality. Furthermore, the introduction of N vacancies augments the nanozyme activity, thus amplifying the catalytic potential of WN nanostructures. Rigorous theoretical modeling and empirical validation corroborate the genesis of the enzyme activity. The meticulously engineered WN nanoflower architecture exhibits an exceptional ability in traversing bacterial surfaces, exerting potent bactericidal effects through direct physical interactions. Additionally, the topological intricacies of these nanostructures facilitate precise targeting of generated radicals on bacterial surfaces, culminating in exceptional bactericidal efficacy against both Gram-negative and Gram-positive bacterial strains along with notable inhibition of bacterial biofilm formation. Importantly, assessments using a skin infection model underscore the proficiency of WN nanoflowers in effectively clearing bacterial infections and fostering wound healing. This pioneering research illuminates the realm of pseudoenzyme activity and bacterial capture-killing strategies, promising a fertile ground for the development of innovative, high-performance artificial peroxidases.
细菌感染每年导致数百万人死亡,而微生物对抗生素的耐药性不断加剧,使这一全球危机更加严重。纳米酶作为抗生素的潜在替代品,在抗菌治疗方面展现出了重要的前沿地位,但其确切的酶起源仍然难以捉摸。随着纳米酶的不断发展,元素 N 调制的纳米酶的应用已经涵盖了多个领域,包括传感和检测、感染治疗、癌症治疗和污染物降解。将氮引入纳米酶不仅拓宽了其应用范围,而且对于生物医学研究中的催化剂设计也具有重要意义。W 和 N 的协同相互作用导致电子结构发生关键变化,赋予氮化钨(WN)过氧化物酶样功能。此外,引入 N 空位会增强纳米酶的活性,从而放大 WN 纳米结构的催化潜力。严格的理论建模和经验验证证实了酶活性的产生。精心设计的 WN 纳米花结构表现出出色的穿越细菌表面的能力,通过直接的物理相互作用发挥强大的杀菌作用。此外,这些纳米结构的拓扑复杂性有助于精确靶向细菌表面上生成的自由基,从而对革兰氏阴性和革兰氏阳性细菌菌株表现出卓越的杀菌效果,并显著抑制细菌生物膜的形成。重要的是,使用皮肤感染模型进行的评估突出了 WN 纳米花在有效清除细菌感染和促进伤口愈合方面的功效。这项开创性的研究阐明了伪酶活性和细菌捕获-杀伤策略的领域,为开发创新的、高性能的人工过氧化物酶铺平了道路。