Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
ACS Chem Biol. 2024 Sep 20;19(9):1953-1962. doi: 10.1021/acschembio.4c00226. Epub 2024 Aug 22.
Dysbiosis of the human gut microbiota is linked to numerous diseases. Understanding the molecular mechanisms by which microbes interact and compete with one another is required for developing successful strategies to modulate the microbiome. The natural product Microcin M (MccM) consists of a 77-residue bioactive peptide conjugated to a siderophore and is a class II microcin involved in microbial competition with an enigmatic mode-of-action. In this work, we investigated the basis for MccM activity and leveraged bioinformatics to expand the known chemical diversity of class II microcins. We applied automated fast-flow solid phase peptide synthesis coupled with chemoenzymatic chemistry to acquire MccM and demonstrated that its activity was bacteriostatic. We then used our synthetic molecule to ascertain that catecholate siderophore transporters in K-12 are necessary for MccM import. Once inside the cell, we found that MccM treatment decreased the levels of intracellular ATP and interfered with gene expression. These effects were ameliorated in genetic mutants lacking ATP synthase or in conditions that support substrate-level phosphorylation. Further, we showed that MccM elevated the levels of reactive oxygen species within the target cell. We propose that MccM effects its bacteriostatic activity by decreasing the total energy level of the cell through inhibition of oxidative phosphorylation. Lastly, using genome mining, we bioinformatically identified 171 novel putative class II microcins. Our investigation sheds light on the natural processes involved in microbial competition and provides inspiration, in the form of new molecules, for future therapeutic endeavors.
人类肠道微生物群落的失调与许多疾病有关。为了开发成功调节微生物组的策略,需要了解微生物相互作用和竞争的分子机制。天然产物 Microcin M(MccM)由 77 个残基的生物活性肽与铁载体连接而成,是一种参与微生物竞争的 II 类微菌素,其作用方式神秘莫测。在这项工作中,我们研究了 MccM 活性的基础,并利用生物信息学扩展了已知的 II 类微菌素的化学多样性。我们应用自动快速流动固相肽合成与化学酶化学相结合的方法获取 MccM,并证明其活性具有抑菌作用。然后,我们使用我们的合成分子确定 K-12 中的儿茶酚 siderophore 转运蛋白是 MccM 导入所必需的。一旦进入细胞,我们发现 MccM 处理会降低细胞内 ATP 的水平并干扰基因表达。在缺乏 ATP 合酶的遗传突变体或支持底物水平磷酸化的条件下,这些影响得到了改善。此外,我们表明 MccM 会增加靶细胞内的活性氧水平。我们提出,MccM 通过抑制氧化磷酸化降低细胞的总能量水平来发挥其抑菌活性。最后,我们通过基因组挖掘,从生物信息学上鉴定了 171 种新的潜在 II 类微菌素。我们的研究揭示了微生物竞争中涉及的自然过程,并以新分子的形式为未来的治疗努力提供了灵感。