Suppr超能文献

生物信息学预测和 RiPP 识别元件的实验验证。

Bioinformatic prediction and experimental validation of RiPP recognition elements.

机构信息

Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.

Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.

出版信息

Methods Enzymol. 2023;679:191-233. doi: 10.1016/bs.mie.2022.08.050. Epub 2022 Nov 24.

Abstract

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a family of natural products for which discovery efforts have rapidly grown over the past decade. There are currently 38 known RiPP classes encoded by prokaryotes. Half of the prokaryotic RiPP classes include a protein domain called the RiPP Recognition Element (RRE) for successful installation of post-translational modifications on a RiPP precursor peptide. In most cases, the RRE domain binds to the N-terminal "leader" region of the precursor peptide, facilitating enzymatic modification of the C-terminal "core" region. The prevalence of the RRE domain renders it a theoretically useful bioinformatic handle for class-independent RiPP discovery; however, first-in-class RiPPs have yet to be isolated and experimentally characterized using an RRE-centric strategy. Moreover, with most known RRE domains engaging their cognate precursor peptide(s) with high specificity and nanomolar affinity, evaluation of the residue-specific interactions that govern RRE:substrate complexation is a necessary first step to leveraging the RRE domain for various bioengineering applications. This chapter details protocols for developing custom bioinformatic models to predict and annotate RRE domains in a class-specific manner. Next, we outline methods for experimental validation of precursor peptide binding using fluorescence polarization binding assays and in vitro enzyme activity assays. We anticipate the methods herein will guide and enhance future critical analyses of the RRE domain, eventually enabling its future use as a customizable tool for molecular biology.

摘要

核糖体合成和翻译后修饰肽(RiPPs)是一类天然产物,在过去十年中,其发现工作迅速发展。目前已知有 38 种由原核生物编码的 RiPP 类。原核生物 RiPP 类中有一半包含一个称为 RiPP 识别元件(RRE)的蛋白质结构域,用于成功地在 RiPP 前体肽上进行翻译后修饰。在大多数情况下,RRE 结构域与前体肽的 N 端“引导”区域结合,促进 C 端“核心”区域的酶修饰。由于 RRE 结构域的普遍性,它成为一种理论上有用的生物信息学工具,可用于独立于类别的 RiPP 发现;然而,迄今为止,还没有使用以 RRE 为中心的策略从第一类 RiPP 中分离和实验表征。此外,由于大多数已知的 RRE 结构域与它们的同源前体肽具有高度特异性和纳摩尔亲和力,评估控制 RRE:底物络合的残基特异性相互作用是利用 RRE 结构域进行各种生物工程应用的必要第一步。本章详细介绍了开发定制生物信息学模型的方法,以特异性地预测和注释 RRE 结构域。接下来,我们概述了使用荧光偏振结合测定法和体外酶活性测定法实验验证前体肽结合的方法。我们预计本文中的方法将指导和增强未来对 RRE 结构域的关键分析,最终使它能够成为分子生物学的可定制工具。

相似文献

1
Bioinformatic prediction and experimental validation of RiPP recognition elements.
Methods Enzymol. 2023;679:191-233. doi: 10.1016/bs.mie.2022.08.050. Epub 2022 Nov 24.
2
RRE-Finder: a Genome-Mining Tool for Class-Independent RiPP Discovery.
mSystems. 2020 Sep 1;5(5):e00267-20. doi: 10.1128/mSystems.00267-20.
3
Peptidase Activation by a Leader Peptide-Bound RiPP Recognition Element.
Biochemistry. 2023 Feb 21;62(4):956-967. doi: 10.1021/acs.biochem.2c00700. Epub 2023 Feb 3.
4
Genome mining unveils a class of ribosomal peptides with two amino termini.
Nat Commun. 2023 Mar 23;14(1):1624. doi: 10.1038/s41467-023-37287-1.
5
A prevalent peptide-binding domain guides ribosomal natural product biosynthesis.
Nat Chem Biol. 2015 Aug;11(8):564-70. doi: 10.1038/nchembio.1856. Epub 2015 Jul 13.
6
Genome mining unveils a class of ribosomal peptides with two amino termini.
bioRxiv. 2023 Mar 8:2023.03.08.531785. doi: 10.1101/2023.03.08.531785.
7
Bioinformatic Atlas of Radical SAM Enzyme-Modified RiPP Natural Products Reveals an Isoleucine-Tryptophan Crosslink.
J Am Chem Soc. 2022 Oct 5;144(39):17876-17888. doi: 10.1021/jacs.2c06497. Epub 2022 Sep 21.
8
New developments in RiPP discovery, enzymology and engineering.
Nat Prod Rep. 2021 Jan 1;38(1):130-239. doi: 10.1039/d0np00027b. Epub 2020 Sep 16.
9
Structures of the peptide-modifying radical SAM enzyme SuiB elucidate the basis of substrate recognition.
Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10420-10425. doi: 10.1073/pnas.1703663114. Epub 2017 Sep 11.
10
Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides.
PLoS Biol. 2020 Dec 22;18(12):e3001026. doi: 10.1371/journal.pbio.3001026. eCollection 2020 Dec.

引用本文的文献

2
Biosynthesis of Biphenomycin-like Macrocyclic Peptides by Formation and Cross-Linking of -Tyrosines.
J Am Chem Soc. 2025 Jul 9;147(27):23781-23796. doi: 10.1021/jacs.5c06044. Epub 2025 Jun 26.
3
Biosynthesis of Macrocyclic Peptides by Formation and Crosslinking of -Tyrosines.
bioRxiv. 2025 Apr 8:2025.04.04.647296. doi: 10.1101/2025.04.04.647296.
4
Fungal RiPPs Side Chain Macrocyclization Catalyzed by Copper-Dependent DUF3328 Enzyme.
J Am Chem Soc. 2025 Mar 12;147(10):8113-8117. doi: 10.1021/jacs.4c18770. Epub 2025 Mar 3.
5
Initiation, Propagation, and Termination in the Chemistry of Radical SAM Enzymes.
Biochemistry. 2024 Dec 17;63(24):3161-3183. doi: 10.1021/acs.biochem.4c00518. Epub 2024 Dec 3.
6
Class IIb Microcin MccM Interferes with Oxidative Phosphorylation in .
ACS Chem Biol. 2024 Sep 20;19(9):1953-1962. doi: 10.1021/acschembio.4c00226. Epub 2024 Aug 22.
7
Cell-free biosynthesis and engineering of ribosomally synthesized lanthipeptides.
Nat Commun. 2024 May 21;15(1):4336. doi: 10.1038/s41467-024-48726-y.
8
Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products.
RSC Chem Biol. 2023 Nov 21;5(2):90-108. doi: 10.1039/d3cb00172e. eCollection 2024 Feb 7.
9
Bioinformatics-guided discovery of biaryl-linked lasso peptides.
Chem Sci. 2023 Oct 30;14(45):13176-13183. doi: 10.1039/d3sc02380j. eCollection 2023 Nov 22.
10
Bioinformatics-Guided Discovery of Biaryl-Tailored Lasso Peptides.
bioRxiv. 2023 Mar 6:2023.03.06.531328. doi: 10.1101/2023.03.06.531328.

本文引用的文献

1
RadicalSAM.org: A Resource to Interpret Sequence-Function Space and Discover New Radical SAM Enzyme Chemistry.
ACS Bio Med Chem Au. 2022 Feb 16;2(1):22-35. doi: 10.1021/acsbiomedchemau.1c00048. Epub 2021 Dec 17.
2
Cell-Free Mutant Analysis Combined with Structure Prediction of a Lasso Peptide Biosynthetic Protease B2.
ACS Synth Biol. 2022 Jun 17;11(6):2022-2028. doi: 10.1021/acssynbio.2c00176. Epub 2022 Jun 8.
3
Redirecting RiPP Biosynthetic Enzymes to Proteins and Backbone-Modified Substrates.
ACS Cent Sci. 2022 Apr 27;8(4):473-482. doi: 10.1021/acscentsci.1c01577. Epub 2022 Mar 21.
5
A roadmap for metagenomic enzyme discovery.
Nat Prod Rep. 2021 Nov 17;38(11):1994-2023. doi: 10.1039/d1np00006c.
6
Bioinformatics-Guided Expansion and Discovery of Graspetides.
ACS Chem Biol. 2021 Dec 17;16(12):2787-2797. doi: 10.1021/acschembio.1c00672. Epub 2021 Nov 12.
7
Discovery and characterisation of an amidine-containing ribosomally-synthesised peptide that is widely distributed in nature.
Chem Sci. 2021 Aug 2;12(35):11769-11778. doi: 10.1039/d1sc01456k. eCollection 2021 Sep 15.
8
Matters of class: coming of age of class III and IV lanthipeptides.
RSC Chem Biol. 2020 Jul 16;1(3):110-127. doi: 10.1039/d0cb00073f. eCollection 2020 Aug 1.
9
Nocathioamides, Uncovered by a Tunable Metabologenomic Approach, Define a Novel Class of Chimeric Lanthipeptides.
Angew Chem Int Ed Engl. 2021 Jul 19;60(30):16472-16479. doi: 10.1002/anie.202102571. Epub 2021 Jun 17.
10
Omics-based strategies to discover novel classes of RiPP natural products.
Curr Opin Biotechnol. 2021 Jun;69:60-67. doi: 10.1016/j.copbio.2020.12.008. Epub 2020 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验