Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
Methods Enzymol. 2023;679:191-233. doi: 10.1016/bs.mie.2022.08.050. Epub 2022 Nov 24.
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a family of natural products for which discovery efforts have rapidly grown over the past decade. There are currently 38 known RiPP classes encoded by prokaryotes. Half of the prokaryotic RiPP classes include a protein domain called the RiPP Recognition Element (RRE) for successful installation of post-translational modifications on a RiPP precursor peptide. In most cases, the RRE domain binds to the N-terminal "leader" region of the precursor peptide, facilitating enzymatic modification of the C-terminal "core" region. The prevalence of the RRE domain renders it a theoretically useful bioinformatic handle for class-independent RiPP discovery; however, first-in-class RiPPs have yet to be isolated and experimentally characterized using an RRE-centric strategy. Moreover, with most known RRE domains engaging their cognate precursor peptide(s) with high specificity and nanomolar affinity, evaluation of the residue-specific interactions that govern RRE:substrate complexation is a necessary first step to leveraging the RRE domain for various bioengineering applications. This chapter details protocols for developing custom bioinformatic models to predict and annotate RRE domains in a class-specific manner. Next, we outline methods for experimental validation of precursor peptide binding using fluorescence polarization binding assays and in vitro enzyme activity assays. We anticipate the methods herein will guide and enhance future critical analyses of the RRE domain, eventually enabling its future use as a customizable tool for molecular biology.
核糖体合成和翻译后修饰肽(RiPPs)是一类天然产物,在过去十年中,其发现工作迅速发展。目前已知有 38 种由原核生物编码的 RiPP 类。原核生物 RiPP 类中有一半包含一个称为 RiPP 识别元件(RRE)的蛋白质结构域,用于成功地在 RiPP 前体肽上进行翻译后修饰。在大多数情况下,RRE 结构域与前体肽的 N 端“引导”区域结合,促进 C 端“核心”区域的酶修饰。由于 RRE 结构域的普遍性,它成为一种理论上有用的生物信息学工具,可用于独立于类别的 RiPP 发现;然而,迄今为止,还没有使用以 RRE 为中心的策略从第一类 RiPP 中分离和实验表征。此外,由于大多数已知的 RRE 结构域与它们的同源前体肽具有高度特异性和纳摩尔亲和力,评估控制 RRE:底物络合的残基特异性相互作用是利用 RRE 结构域进行各种生物工程应用的必要第一步。本章详细介绍了开发定制生物信息学模型的方法,以特异性地预测和注释 RRE 结构域。接下来,我们概述了使用荧光偏振结合测定法和体外酶活性测定法实验验证前体肽结合的方法。我们预计本文中的方法将指导和增强未来对 RRE 结构域的关键分析,最终使它能够成为分子生物学的可定制工具。