Wu Ke-Hui, Zhu Li-Ting, Xiao Fang-Fang, Hu Xuejia, Li Sen-Sen, Chen Lu-Jian
Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, China.
Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen, China.
Nat Commun. 2024 Aug 22;15(1):7217. doi: 10.1038/s41467-024-51383-w.
Electrically powered solitons are particle-like field configurations in out-of-equilibrium nematics that have garnered significant interest. However, their random generation and lack of controllable motion have limited their application. Here, we present a reconfigurable optoelectronic approach capable of regulating the entire lifecycle of solitons by utilizing multi-strategy digital light projection to construct delicate patterning of virtual electrode. We demonstrate that optically actuated domains with diverse geometry enable the generation of multiple solitons and further allow in-situ formation of individual soliton by matching the light pattern to its dimension. Exquisitely engineered light intensity of patterns facilitates modulation of soliton velocity and transformation of propagating direction. The utilization of a light-guided channel enables the on-demand control of soliton trajectories along customized paths. Furthermore, dynamic light patterns that vary in space and time allow for collective motion such as migration, mimicking phototaxis in biological systems. This reconfigurable manipulation strategy, grounded in the photoconductive effect, proves highly versatile and effective in directing soliton dynamics, heralding the potential for their programmable control and offering a significant advantage in multitasking scenarios.
电驱动孤子是处于非平衡向列相中的类粒子场构型,已引起了广泛关注。然而,它们的随机产生和缺乏可控运动限制了其应用。在此,我们提出一种可重构的光电方法,通过利用多策略数字光投影来构建虚拟电极的精细图案,从而能够调节孤子的整个生命周期。我们证明,具有不同几何形状的光驱动域能够产生多个孤子,并通过使光图案与其尺寸相匹配进一步允许单个孤子的原位形成。精心设计的图案光强度有助于调节孤子速度和传播方向的转变。利用光导通道能够沿定制路径按需控制孤子轨迹。此外,在空间和时间上变化的动态光图案允许集体运动,如迁移,模仿生物系统中的趋光性。这种基于光电导效应的可重构操纵策略在引导孤子动力学方面被证明具有高度的通用性和有效性,预示着它们可编程控制的潜力,并在多任务场景中具有显著优势。