Dee William, Sequeira Ines, Lobley Anna, Slabaugh Gregory
Digital Environment Research Institute (DERI), Queen Mary University of London, London E1 1HH, UK.
Centre for Oral Immunobiology and Regenerative Medicine, Barts Centre for Squamous Cancer, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK.
iScience. 2024 Jul 15;27(8):110511. doi: 10.1016/j.isci.2024.110511. eCollection 2024 Aug 16.
Image-based profiling of the cellular response to drug compounds has proven effective at characterizing the morphological changes resulting from perturbation experiments. As data availability increases, however, there are growing demands for novel deep-learning methods. We applied the SwinV2 computer vision architecture to predict the mechanism of action of 10 kinase inhibitor compounds directly from Cell Painting images. This method outperforms the standard approach of using image-based profiles (IBP)-multidimensional feature set representations generated by bioimaging software. Furthermore, our fusion approach-cell-vision fusion, combining three different data modalities, images, IBPs, and chemical structures-achieved 69.79% accuracy and 70.56% F1 score, 4.20% and 5.49% higher, respectively, than the best-performing IBP method. We provide three techniques, specific to Cell Painting images, which enable deep-learning architectures to train effectively and demonstrate approaches to combat the significant batch effects present in large Cell Painting datasets.
基于图像的药物化合物细胞反应分析已被证明在表征扰动实验导致的形态变化方面是有效的。然而,随着数据可用性的增加,对新型深度学习方法的需求也在不断增长。我们应用SwinV2计算机视觉架构直接从细胞绘画图像预测10种激酶抑制剂化合物的作用机制。该方法优于使用基于图像的特征(IBP)的标准方法,即由生物成像软件生成的多维特征集表示。此外,我们的融合方法——细胞视觉融合,结合了三种不同的数据模态,图像、IBP和化学结构,实现了69.79%的准确率和70.56%的F1分数,分别比性能最佳的IBP方法高出4.20%和5.49%。我们提供了三种特定于细胞绘画图像的技术,这些技术使深度学习架构能够有效训练,并展示了应对大型细胞绘画数据集中存在的显著批次效应的方法。