Suppr超能文献

超导-手性材料异质结构中自旋活性界面和局域增强塞曼场的特征

Signatures of a spin-active interface and a locally enhanced Zeeman field in a superconductor-chiral material heterostructure.

作者信息

Chen Cliff, Tran Jason, McFadden Anthony, Simmonds Raymond, Saito Keisuke, Chu En-De, Morales Daniel, Suezaki Varrick, Hou Yasen, Aumentado Joe, Lee Patrick A, Moodera Jagadeesh S, Wei Peng

机构信息

Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA.

National Institute of Standards and Technology, Boulder, CO 80305, USA.

出版信息

Sci Adv. 2024 Aug 23;10(34):eado4875. doi: 10.1126/sciadv.ado4875.

Abstract

A localized Zeeman field, intensified at heterostructure interfaces, could play a crucial role in a broad area including spintronics and unconventional superconductors. Conventionally, the generation of a local Zeeman field is achieved through magnetic exchange coupling with a magnetic material. However, magnetic elements often introduce defects, which could weaken or destroy superconductivity. Alternatively, the coupling between a superconductor with strong spin-orbit coupling and a nonmagnetic chiral material could serve as a promising approach to generate a spin-active interface. Here, we leverage an interface superconductor, namely, induced superconductivity in noble metal surface states, to probe the spin-active interface. Our results unveil an enhanced interface Zeeman field, which selectively closes the surface superconducting gap while preserving the bulk superconducting pairing. The chiral material, i.e., trigonal tellurium, also induces Andreev bound states (ABS) exhibiting spin polarization. The field dependence of ABS manifests a substantially enhanced interface Landé -factor ( ~ 12), thereby corroborating the enhanced interface Zeeman energy.

摘要

一种在异质结构界面处增强的局域塞曼场,可能在包括自旋电子学和非常规超导体在内的广泛领域中发挥关键作用。传统上,局域塞曼场的产生是通过与磁性材料的磁交换耦合来实现的。然而,磁性元素常常会引入缺陷,这可能会削弱或破坏超导性。另外,具有强自旋轨道耦合的超导体与非磁性手性材料之间的耦合,可能是产生自旋活性界面的一种有前途的方法。在这里,我们利用一种界面超导体,即贵金属表面态中的诱导超导性,来探测自旋活性界面。我们的结果揭示了一个增强的界面塞曼场,它在保留体超导配对的同时,选择性地关闭表面超导能隙。手性材料,即三角碲,还诱导出表现出自旋极化的安德列夫束缚态(ABS)。ABS的场依赖性表现出显著增强的界面朗德因子(约为12),从而证实了增强的界面塞曼能量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb13/11343014/a7679275f097/sciadv.ado4875-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验