Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
J Appl Genet. 2024 Dec;65(4):665-681. doi: 10.1007/s13353-024-00901-z. Epub 2024 Aug 24.
Rice blast disease, caused by Magnaporthe oryzae, reigns as the top-most cereal killer, jeopardizing global food security. This necessitates the timely scouting of pathogen stress-responsive genes during the early infection stages. Thus, we integrated time-series microarray (GSE95394) and RNA-Seq (GSE131641) datasets to decipher rice transcriptome responses at 12- and 24-h post-infection (Hpi). Our analysis revealed 1580 differentially expressed genes (DEGs) overlapped between datasets. We constructed a protein-protein interaction (PPI) network for these DEGs and identified significant subnetworks using the MCODE plugin. Further analysis with CytoHubba highlighted eight plausible hub genes for pathogenesis: RPL8 (upregulated) and RPL27, OsPRPL3, RPL21, RPL9, RPS5, OsRPS9, and RPL17 (downregulated). We validated the expression levels of these hub genes in response to infection, finding that RPL8 exhibited significantly higher expression compared with other downregulated genes. Remarkably, RPL8 formed a distinct cluster in the co-expression network, whereas other hub genes were interconnected, with RPL9 playing a central role, indicating its pivotal role in coordinating gene expression during infection. Gene Ontology highlighted the enrichment of hub genes in the ribosome and protein translation processes. Prior studies suggested that plant immune defence activation diminishes the energy pool by suppressing ribosomes. Intriguingly, our study aligns with this phenomenon, as the identified ribosomal proteins (RPs) were suppressed, while RPL8 expression was activated. We anticipate that these RPs could be targeted to develop new stress-resistant rice varieties, beyond their housekeeping role. Overall, integrating transcriptomic data revealed more common DEGs, enhancing the reliability of our analysis and providing deeper insights into rice blast disease mechanisms.
稻瘟病由稻瘟病菌引起,是头号谷类杀手,危及全球粮食安全。因此,需要在早期感染阶段及时探测病原体应激响应基因。我们整合了时间序列微阵列(GSE95394)和 RNA-Seq(GSE131641)数据集,以解析感染后 12 小时和 24 小时的水稻转录组应答。我们的分析揭示了数据集之间有 1580 个差异表达基因(DEG)重叠。我们为这些 DEG 构建了一个蛋白质-蛋白质相互作用(PPI)网络,并使用 MCODE 插件识别了显著的子网络。进一步使用 CytoHubba 分析突出了八个可能与发病机制相关的核心基因:RPL8(上调)和 RPL27、OsPRPL3、RPL21、RPL9、RPS5、OsRPS9 和 RPL17(下调)。我们验证了这些核心基因在感染响应中的表达水平,发现 RPL8 的表达水平明显高于其他下调基因。值得注意的是,RPL8 在共表达网络中形成了一个独特的簇,而其他核心基因相互连接,其中 RPL9 发挥着中心作用,表明其在感染过程中协调基因表达的关键作用。基因本体论强调了核心基因在核糖体和蛋白质翻译过程中的富集。先前的研究表明,植物免疫防御的激活通过抑制核糖体来减少能量池。有趣的是,我们的研究与这一现象一致,因为鉴定的核糖体蛋白(RPs)被抑制,而 RPL8 的表达被激活。我们预计这些 RPs 可以作为靶点,开发新的抗应激水稻品种,超越其管家作用。总的来说,整合转录组数据揭示了更多的共同差异表达基因,提高了我们分析的可靠性,并提供了对稻瘟病机制的更深入了解。