Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States.
Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, United States.
DNA Repair (Amst). 2024 Oct;142:103751. doi: 10.1016/j.dnarep.2024.103751. Epub 2024 Aug 16.
Since the report of "DNA untwisting" activity in 1972, ∼50 years of research has revealed seven topoisomerases in humans (TOP1, TOP1mt, TOP2α, TOP2β, TOP3α, TOP3β and Spo11). These conserved regulators of DNA topology catalyze controlled breakage to the DNA backbone to relieve the torsional stress that accumulates during essential DNA transactions including DNA replication, transcription, and DNA repair. Each topoisomerase-catalyzed reaction involves the formation of a topoisomerase cleavage complex (TOPcc), a covalent protein-DNA reaction intermediate formed between the DNA phosphodiester backbone and a topoisomerase catalytic tyrosine residue. A variety of perturbations to topoisomerase reaction cycles can trigger failure of the enzyme to re-ligate the broken DNA strand(s), thereby generating topoisomerase DNA-protein crosslinks (TOP-DPC). TOP-DPCs pose unique threats to genomic integrity. These complex lesions are comprised of structurally diverse protein components covalently linked to genomic DNA, which are bulky DNA adducts that can directly impact progression of the transcription and DNA replication apparatus. A variety of genome maintenance pathways have evolved to recognize and resolve TOP-DPCs. Eukaryotic cells harbor tyrosyl DNA phosphodiesterases (TDPs) that directly reverse 3'-phosphotyrosyl (TDP1) and 5'-phoshotyrosyl (TDP2) protein-DNA linkages. The broad specificity Mre11-Rad50-Nbs1 and APE2 nucleases are also critical for mitigating topoisomerase-generated DNA damage. These DNA-protein crosslink metabolizing enzymes are further enabled by proteolytic degradation, with the proteasome, Spartan, GCNA, Ddi2, and FAM111A proteases implicated thus far. Strategies to target, unfold, and degrade the protein component of TOP-DPCs have evolved as well. Here we survey mechanisms for addressing Topoisomerase 1 (TOP1) and Topoisomerase 2 (TOP2) DPCs, highlighting systems for which molecular structure information has illuminated function of these critical DNA damage response pathways.
自 1972 年报道“DNA 解旋”活性以来,经过约 50 年的研究,人类已经发现了 7 种拓扑异构酶(TOP1、TOP1mt、TOP2α、TOP2β、TOP3α、TOP3β 和 Spo11)。这些 DNA 拓扑结构的保守调节剂催化 DNA 骨架的可控断裂,以缓解在包括 DNA 复制、转录和 DNA 修复在内的基本 DNA 转导过程中积累的扭转应力。每种拓扑异构酶催化的反应都涉及到拓扑异构酶切割复合物(TOPcc)的形成,这是一种在 DNA 磷酸二酯骨架和拓扑异构酶催化酪氨酸残基之间形成的共价蛋白-DNA 反应中间体。拓扑异构酶反应循环的各种扰动会导致酶无法重新连接断裂的 DNA 链,从而产生拓扑异构酶-DNA 蛋白交联(TOP-DPC)。TOP-DPC 对基因组完整性构成独特威胁。这些复杂的损伤由结构多样的蛋白质成分与基因组 DNA 共价连接组成,是庞大的 DNA 加合物,可直接影响转录和 DNA 复制装置的进展。已经进化出多种基因组维护途径来识别和解决 TOP-DPC。真核细胞含有酪氨酸 DNA 磷酸二酯酶(TDP),可直接逆转 3'-磷酸酪氨酸(TDP1)和 5'-磷酸酪氨酸(TDP2)蛋白-DNA 键。广泛特异性的 Mre11-Rad50-Nbs1 和 APE2 核酸内切酶对于减轻拓扑异构酶引起的 DNA 损伤也至关重要。这些 DNA-蛋白交联代谢酶进一步通过蛋白水解降解来实现,迄今为止,蛋白酶体、Spartan、GCNA、Ddi2 和 FAM111A 蛋白酶已被牵涉其中。靶向、展开和降解 TOP-DPC 蛋白质成分的策略也已经发展起来。在这里,我们调查了处理拓扑异构酶 1(TOP1)和拓扑异构酶 2(TOP2)DPC 的机制,重点介绍了为这些关键的 DNA 损伤反应途径阐明功能的分子结构信息系统。