Suppr超能文献

利用基于猎鹰优化算法和深度学习的计算机辅助诊断系统进行白血病检测和分类。

Leukemia detection and classification using computer-aided diagnosis system with falcon optimization algorithm and deep learning.

机构信息

Department of Biology, College of Science and Arts at Alkamil, University of Jeddah, Jeddah, Saudi Arabia.

Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.

出版信息

Sci Rep. 2024 Sep 18;14(1):21755. doi: 10.1038/s41598-024-72900-3.

Abstract

Leukemia is a type of blood tumour that occurs because of abnormal enhancement in WBCs (white blood cells) in the bone marrow of the human body. Blood-forming tissue cancer influences the lymphatic and bone marrow system. The early diagnosis and detection of leukaemia, i.e., the accurate difference of malignant leukocytes with little expense at the beginning of the disease, is a primary challenge in the disease analysis field. Despite the higher occurrence of leukemia, there is a lack of flow cytometry tools, and the procedures accessible at medical diagnostics centres are time-consuming. Distinct researchers have implemented computer-aided diagnostic (CAD) and machine learning (ML) methods for laboratory image analysis, aiming to manage the restrictions of late leukemia analysis. This study proposes a new Falcon optimization algorithm with deep convolutional neural network for Leukemia detection and classification (FOADCNN-LDC) technique. The main objective of the FOADCNN-LDC technique is to classify and recognize leukemia. The FOADCNN-LDC technique utilizes a median filtering (MF) based noise removal process to eradicate the image noise. Besides, the FOADCNN-LDC technique employs the ShuffleNetv2 model for the feature extraction process. Moreover, the detection and classification of the leukemia process are performed by utilizing the convolutional denoising autoencoder (CDAE) model. The FOA is implemented to select the hyperparameter of the CDAE model. The simulation process of the FOADCNN-LDC approach is performed on a benchmark medical dataset. The investigational analysis of the FOADCNN-LDC approach highlighted a superior accuracy value of 99.62% over existing techniques.

摘要

白血病是一种血液肿瘤,由于人体骨髓中白细胞(白细胞)的异常增强而发生。造血组织癌症影响淋巴和骨髓系统。白血病的早期诊断和检测,即在疾病初期以较小的费用准确区分恶性白细胞,是疾病分析领域的主要挑战。尽管白血病的发病率较高,但缺乏流式细胞术工具,而且医疗诊断中心提供的程序耗时较长。不同的研究人员已经为实验室图像分析实施了计算机辅助诊断(CAD)和机器学习(ML)方法,旨在解决晚期白血病分析的限制。本研究提出了一种新的基于 Falcon 优化算法和深度卷积神经网络的白血病检测和分类(FOADCNN-LDC)技术。FOADCNN-LDC 技术的主要目的是对白血病进行分类和识别。FOADCNN-LDC 技术利用基于中值滤波(MF)的噪声去除过程来消除图像噪声。此外,FOADCNN-LDC 技术还使用 ShuffleNetv2 模型进行特征提取过程。此外,利用卷积去噪自动编码器(CDAE)模型进行白血病的检测和分类。FOA 用于选择 CDAE 模型的超参数。FOADCNN-LDC 方法的模拟过程在基准医疗数据集上进行。对 FOADCNN-LDC 方法的研究分析表明,其准确性值优于现有技术的 99.62%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7255/11410793/d6be5d464f11/41598_2024_72900_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验