Jiang Joy, Thi Vy Ha My, Charney Alexander, Kovatch Patricia, Reddy Vivek, Jayaraman Pushkala, Do Ron, Khera Rohan, Chugh Sumeet, Bhatt Deepak L, Vaid Akhil, Lampert Joshua, Nadkarni Girish Nitin
The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
NPJ Digit Med. 2024 Aug 24;7(1):226. doi: 10.1038/s41746-024-01218-1.
Congenital long QT syndrome (LQTS) diagnosis is complicated by limited genetic testing at scale, low prevalence, and normal QT corrected interval in patients with high-risk genotypes. We developed a deep learning approach combining electrocardiogram (ECG) waveform and electronic health record data to assess whether patients had pathogenic variants causing LQTS. We defined patients with high-risk genotypes as having ≥1 pathogenic variant in one of the LQTS-susceptibility genes. We trained the model using data from United Kingdom Biobank (UKBB) and then fine-tuned in a racially/ethnically diverse cohort using Mount Sinai BioMe Biobank. Following group-stratified 5-fold splitting, the fine-tuned model achieved area under the precision-recall curve of 0.29 (95% confidence interval [CI] 0.28-0.29) and area under the receiver operating curve of 0.83 (0.82-0.83) on independent testing data from BioMe. Multimodal fusion learning has promise to identify individuals with pathogenic genetic mutations to enable patient prioritization for further work up.
先天性长QT综合征(LQTS)的诊断因大规模基因检测受限、患病率低以及高危基因型患者的QT校正间期正常而变得复杂。我们开发了一种深度学习方法,结合心电图(ECG)波形和电子健康记录数据,以评估患者是否具有导致LQTS的致病变异。我们将高危基因型患者定义为在LQTS易感基因之一中具有≥1个致病变异。我们使用来自英国生物银行(UKBB)的数据训练模型,然后在使用西奈山生物医学银行的种族/民族多样化队列中进行微调。经过分组分层的5折拆分后,在来自生物医学银行的独立测试数据上,微调后的模型在精确召回曲线下面积为0.29(95%置信区间[CI]0.28 - 0.29),在受试者工作特征曲线下面积为0.83(0.82 - 0.83)。多模态融合学习有望识别具有致病基因突变的个体,以便为进一步检查确定患者优先级。