Suppr超能文献

利用宏基因组学揭示和减轻反刍动物甲烷排放:综合方法和未来方向。

Harnessing meta-omics to unveil and mitigate methane emissions in ruminants: Integrative approaches and future directions.

机构信息

Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China.

Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China.

出版信息

Sci Total Environ. 2024 Nov 15;951:175732. doi: 10.1016/j.scitotenv.2024.175732. Epub 2024 Aug 23.

Abstract

Methane emissions from enteric fermentation present a dual challenge globally: they not only contribute significantly to atmospheric greenhouse gases but also represent a considerable energy loss for ruminant animals. Utilizing high-throughput omics technologies to analyze rumen microbiome samples (meta-omics, i.e., metagenomics, metatranscriptomics, metaproteomics, metabolomics) holds vast potential for uncovering the intricate interplay between diet, microbiota, and methane emissions in these animals. The primary obstacle is the effective integration of diverse meta-omic approaches and their broader application across different ruminant species. Genetic variability significantly impacts methane production in ruminants, suggesting that genomic selection could be a viable strategy to reduce emissions. While substantial research has been conducted on the microbiological aspects of methane production, there remains a critical need to delineate the specific genetic interactions between the host and its microbiome. Advancements in meta-omics technologies are poised to shed light on these interactions, enhancing our understanding of the genetic factors that govern methane output. This review explores the potential of meta-omics to accelerate genetic advancements that could lead to reduced methane emissions in ruminants. By employing a systems biology approach, the integration of various omics technologies allows for the identification of key genomic regions and genetic markers linked to methane production. These markers can then be leveraged in selective breeding programs to cultivate traits associated with lower emissions. Moreover, the review addresses current challenges in applying genomic selection for this purpose and discusses how omics technologies can overcome these obstacles. The systematic integration and analysis of diverse biological data provide deeper insights into the genetic underpinnings and overall biology of methane production traits in ruminants. Ultimately, this comprehensive approach not only aids in reducing the environmental impact of agriculture but also contributes to the sustainability and efficiency of livestock management.

摘要

肠发酵产生的甲烷排放对全球来说是一个双重挑战

它不仅对大气温室气体有很大的贡献,而且对反刍动物来说也是相当大的能量损失。利用高通量组学技术分析瘤胃微生物组样本(元组学,即宏基因组学、宏转录组学、宏蛋白质组学、代谢组学)为揭示这些动物中饮食、微生物群和甲烷排放之间的复杂相互作用提供了巨大的潜力。主要障碍是有效整合不同的元组学方法及其在不同反刍动物物种中的更广泛应用。遗传变异对反刍动物的甲烷产生有显著影响,这表明基因组选择可能是减少排放的一种可行策略。虽然已经对甲烷产生的微生物学方面进行了大量研究,但仍需要明确宿主与其微生物组之间的具体遗传相互作用。元组学技术的进步有望揭示这些相互作用,增强我们对控制甲烷产量的遗传因素的理解。这篇综述探讨了元组学在加速遗传进展方面的潜力,这可能会减少反刍动物的甲烷排放。通过采用系统生物学方法,整合各种组学技术可以识别与甲烷产生相关的关键基因组区域和遗传标记。然后,可以在选择性育种计划中利用这些标记来培养与低排放相关的特征。此外,该综述还讨论了目前在为此目的应用基因组选择方面所面临的挑战,并探讨了元组学技术如何克服这些障碍。系统地整合和分析多样化的生物数据提供了对反刍动物甲烷产生性状的遗传基础和整体生物学的更深入了解。最终,这种综合方法不仅有助于减少农业对环境的影响,还有助于维持和提高畜牧业管理的可持续性和效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验