Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia.
Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia.
World J Microbiol Biotechnol. 2024 Aug 13;40(10):300. doi: 10.1007/s11274-024-04103-x.
Livestock production significantly contributes to greenhouse gas (GHG) emissions particularly methane (CH) emissions thereby influencing climate change. To address this issue further, it is crucial to establish strategies that simultaneously increase ruminant productivity while minimizing GHG emissions, particularly from cattle, sheep, and goats. Recent advancements have revealed the potential for modulating the rumen microbial ecosystem through genetic selection to reduce methane (CH) production, and by microbial genome editing including CRISPR/Cas9, TALENs (Transcription Activator-Like Effector Nucleases), ZFNs (Zinc Finger Nucleases), RNA interference (RNAi), Pime editing, Base editing and double-stranded break-free (DSB-free). These technologies enable precise genetic modifications, offering opportunities to enhance traits that reduce environmental impact and optimize metabolic pathways. Additionally, various nutrition-related measures have shown promise in mitigating methane emissions to varying extents. This review aims to present a future-oriented viewpoint on reducing methane emissions from ruminants by leveraging CRISPR/Cas9 technology to engineer the microbial consortia within the rumen. The ultimate objective is to develop sustainable livestock production methods that effectively decrease methane emissions, while maintaining animal health and productivity.
畜牧业生产对温室气体(GHG)排放,特别是甲烷(CH)排放有重大贡献,从而影响气候变化。为了进一步解决这个问题,至关重要的是要制定同时提高反刍动物生产力,同时将温室气体排放(特别是牛、绵羊和山羊的排放)最小化的策略。最近的进展表明,通过遗传选择来调节瘤胃微生物生态系统以减少甲烷(CH)的产生是有潜力的,通过微生物基因组编辑,包括 CRISPR/Cas9、TALENs(转录激活因子样效应物核酸酶)、ZFNs(锌指核酸酶)、RNA 干扰(RNAi)、Prime 编辑、碱基编辑和无双链断裂(DSB-free)。这些技术可以实现精确的基因修饰,为增强减少环境影响和优化代谢途径的特性提供了机会。此外,各种与营养相关的措施在不同程度上显示出减轻甲烷排放的潜力。本综述旨在通过利用 CRISPR/Cas9 技术来构建瘤胃中的微生物群落,提出一种针对减少反刍动物甲烷排放的未来导向的观点。最终目标是开发可持续的畜牧业生产方法,有效地减少甲烷排放,同时保持动物的健康和生产力。