Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
Advanced Chemical Studies Lab, Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran.
Int J Biol Macromol. 2024 Nov;279(Pt 1):135052. doi: 10.1016/j.ijbiomac.2024.135052. Epub 2024 Aug 23.
Hydrogels based on natural polymers have lightened the path of novel drug delivery systems, wound healing, and tissue engineering fields because they are renewable, non-toxic, biocompatible, and biodegradable. Furthermore, applying modified hydrogels can upgrade their biological activity. Herein, Chitosan (CS) was used to create a hydrogel using terephthaloyl thiourea as a cross-linker. Silk fibroin (SF) and carbon nitride (CN) were added to the hydrogel to enhance its strength and biocompatibility. Finally, CS hydrogel/SF/CN was in situ magnetized using FeO magnetic nanoparticles (MNPs) and manufactured as a nanobiocomposite for improved hyperthermia. The structural properties of the nanobiocomposite were assessed using several analytical techniques, including VSM, FTIR, TGA, EDX, XRD, and FESEM. The saturation magnetization of this magnetic nanocomposite was 23.94 emu/g. The hemolytic experiment on the nanobiocomposite resulted in ca. 98 % cell survival, with a hemolysis rate of 1.69 %. Anticancer property is confirmed by a 20.0 % reduction in cell viability of BT549 cells at 1.75 mg/mL concentration compared to 0.015 mg/mL. The nanocomposite is non-toxic to the human embryonic kidney cell line (HEK293T), indicating its potential for biomedical applications. Finally, the magnetic nanocomposite's hyperthermia behavior was examined using a specific absorption rate (SAR), achieving the highest value of 47.44 W/g at 200.0 kHz. When subjected to an alternating magnetic field, the nanobiocomposite may perform well in hyperthermia therapy. These results indicate that the magnetic nanobiocomposite has the potential to perform well in hyperthermia therapy when subjected to an alternating magnetic field.
基于天然聚合物的水凝胶减轻了新型药物输送系统、伤口愈合和组织工程领域的负担,因为它们是可再生的、无毒的、生物相容的和可生物降解的。此外,应用改性水凝胶可以提高其生物活性。在这里,壳聚糖 (CS) 被用来制造一种水凝胶,使用对苯二甲酰硫脲作为交联剂。丝素蛋白 (SF) 和氮化碳 (CN) 被添加到水凝胶中,以提高其强度和生物相容性。最后,使用 FeO 磁性纳米粒子 (MNP) 将 CS 水凝胶/SF/CN 原位磁化,并制造为纳米生物复合材料,以提高其高热性能。使用几种分析技术评估纳米生物复合材料的结构性能,包括 VSM、FTIR、TGA、EDX、XRD 和 FESEM。这种磁性纳米复合材料的饱和磁化强度为 23.94 emu/g。纳米生物复合材料的溶血实验结果表明,约 98%的细胞存活,溶血率为 1.69%。BT549 细胞在 1.75 mg/mL 浓度下的细胞活力降低了 20.0%,证实了其抗癌特性,而在 0.015 mg/mL 浓度下的细胞活力降低了 1.69%。纳米复合材料对人胚肾细胞系(HEK293T)没有毒性,表明其在生物医学应用中的潜力。最后,通过比吸收率 (SAR) 检查了磁性纳米复合材料的热疗行为,在 200.0 kHz 时达到了 47.44 W/g 的最高值。当处于交变磁场中时,纳米生物复合材料可能在热疗中表现良好。这些结果表明,当处于交变磁场中时,磁性纳米生物复合材料有可能在热疗中表现良好。