Suppr超能文献

从整体来看,利用主题建模来观察与疾病相关的微生物群落。

Looking at the full picture, using topic modeling to observe microbiome communities associated with disease.

作者信息

Fitzjerrells Rachel L, Ollberding Nicholas J, Mangalam Ashutosh K

机构信息

Interdisciplinary Graduate Program in Informatics, University of Iowa, Iowa City, IA, 52242, USA.

College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA.

出版信息

Gut Microbes Rep. 2024;1(1):1-11. doi: 10.1080/29933935.2024.2378067. Epub 2024 Aug 20.

Abstract

The microbiome, a complex micro-ecosystem, helps the host with various vital physiological processes. Alterations of the microbiome (dysbiosis) have been linked with several diseases, and generally, differential abundance testing between the healthy and patient groups is performed to identify important bacteria. However, providing a singular species of bacteria to an individual as treatment has not been as successful as fecal microbiota transplant therapy, where the entire microbiome of a healthy individual is transferred. These observations suggest that a combination of bacteria might be crucial for the beneficial effects. Here we provide the framework to utilize topic modeling, an unsupervised machine learning approach, to identify a community of bacteria related to health or disease. Specifically, we used our previously published gut microbiome data of patients with multiple sclerosis (MS), a neurodegenerative disease linked to a dysbiotic gut microbiome. We identified communities of bacteria associated with MS, including genera previously discovered, but also others that would have been overlooked by differential abundance testing. This method can be a useful tool for analyzing the microbiome, and it should be considered along with the commonly utilized differential abundance tests to better understand the role of the gut microbiome in health and disease.

摘要

微生物组是一个复杂的微生态系统,它帮助宿主完成各种重要的生理过程。微生物组的改变(生态失调)与多种疾病有关,通常会对健康组和患者组进行差异丰度检测,以识别重要的细菌。然而,将单一细菌物种作为治疗手段应用于个体,其效果不如粪便微生物群移植疗法,后者是将健康个体的整个微生物组进行移植。这些观察结果表明,细菌组合可能对产生有益效果至关重要。在此,我们提供了一个利用主题建模(一种无监督机器学习方法)来识别与健康或疾病相关的细菌群落的框架。具体而言,我们使用了我们之前发表的多发性硬化症(MS)患者的肠道微生物组数据,MS是一种与肠道微生物组生态失调相关的神经退行性疾病。我们识别出了与MS相关的细菌群落,包括之前发现的属,也包括一些通过差异丰度检测会被忽略的属。这种方法可以成为分析微生物组的有用工具,并且应该与常用的差异丰度检测一起考虑,以更好地理解肠道微生物组在健康和疾病中的作用。

相似文献

8
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.使用患者特异性截骨导向器的前路全踝关节置换术。
JBJS Essent Surg Tech. 2025 Aug 15;15(3). doi: 10.2106/JBJS.ST.23.00027. eCollection 2025 Jul-Sep.

本文引用的文献

1
A toolbox of machine learning software to support microbiome analysis.一个支持微生物组分析的机器学习软件工具箱。
Front Microbiol. 2023 Nov 22;14:1250806. doi: 10.3389/fmicb.2023.1250806. eCollection 2023.
3
The best practice for microbiome analysis using R.使用 R 进行微生物组分析的最佳实践。
Protein Cell. 2023 Oct 25;14(10):713-725. doi: 10.1093/procel/pwad024.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验