Suppr超能文献

基于磁共振成像的联合放射组学-临床模型预测前列腺癌包膜外侵犯的价值:一项初步研究

Value of a combined magnetic resonance imaging-based radiomics-clinical model for predicting extracapsular extension in prostate cancer: a preliminary study.

作者信息

Yang Liqin, Jin Pengfei, Qian Jing, Qiao Xiaomeng, Bao Jie, Wang Ximing

机构信息

Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.

Department of Radiology, The Cancer Hospital of the University of Chinese Academy of Science (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, Hangzhou, China.

出版信息

Transl Cancer Res. 2023 Jul 31;12(7):1787-1801. doi: 10.21037/tcr-22-2750. Epub 2023 Jun 26.

Abstract

BACKGROUND

Extracapsular extension (ECE) of prostate cancer (PCa) is closely related to the treatment and prognosis of patients, and radiomics has been widely used in the study of PCa. This study aimed to evaluate the value of a combined model considering magnetic resonance imaging (MRI)-based radiomics and clinical parameters for predicting ECE in PCa.

METHODS

A total of 392 PCa patients enrolled in this retrospective study were randomly divided into the training and validation sets at a ratio of 7:3. Radiologists assessed all lesions by Mehralivand grade. Radiomics features were extracted and selected to build a radiomics model, while clinical parameters were noted to construct the clinical model. The combined model was constructed by the integration of the radiomics model and clinical model. Meanwhile, the nomogram for predicting ECE was constructed based on the combined model. Then, the area under the receiver operating characteristic (ROC) curve (AUC), Delong test and the decision curve analysis (DCA) were used to compare the performance among the combined model, radiomics model, clinical model and Mehralivand grade.

RESULTS

The AUC of the combined model in the validation set was comparable to that of the radiomics model [AUC =0.894 (95% confidence interval (CI): 0.837-0.950) 0.835 (95% CI: 0.763-0.908), P>0.05]. In addition, the sensitivity of the combined model and radiomics model was 90.7% and 77.8%, with an accuracy of 81.4% and 76.3%, respectively. On the other hand, the AUCs of the Mehralivand grade of radiologists and clinical model were 0.774 (95% CI: 0.691-0.857) and 0.749 (95% CI: 0.658-0.840), respectively, in the validation set, which were lower than those in the combined model (P<0.05). The DCA implied that the combined model could obtain the maximum net clinical benefits compared with the clinical model, the Mehralivand grade and radiomics model.

CONCLUSIONS

The combined model has a satisfactory predictive value for ECE in PCa patients compared with the clinical model, Mehralivand grade of radiologists, and the radiomics model.

摘要

背景

前列腺癌(PCa)的包膜外扩展(ECE)与患者的治疗及预后密切相关,且放射组学已广泛应用于PCa研究。本研究旨在评估基于磁共振成像(MRI)的放射组学与临床参数相结合的模型对预测PCa中ECE的价值。

方法

本回顾性研究纳入的392例PCa患者按7:3的比例随机分为训练集和验证集。放射科医生通过Mehralivand分级评估所有病灶。提取并选择放射组学特征以构建放射组学模型,同时记录临床参数以构建临床模型。通过整合放射组学模型和临床模型构建联合模型。同时,基于联合模型构建预测ECE的列线图。然后,使用受试者操作特征(ROC)曲线下面积(AUC)、Delong检验和决策曲线分析(DCA)来比较联合模型、放射组学模型、临床模型和Mehralivand分级之间的性能。

结果

验证集中联合模型的AUC与放射组学模型相当[AUC =0.894(95%置信区间(CI):0.837 - 0.950)对0.835(95%CI:0.763 - 0.908),P>0.05]。此外,联合模型和放射组学模型的敏感性分别为90.7%和77.8%,准确率分别为81.4%和76.3%。另一方面,验证集中放射科医生的Mehralivand分级和临床模型的AUC分别为0.774(95%CI:0.691 - 0.857)和0.749(95%CI:0.658 - 0.840),低于联合模型(P<0.05)。DCA表明,与临床模型、Mehralivand分级和放射组学模型相比,联合模型可获得最大的净临床效益。

结论

与临床模型、放射科医生的Mehralivand分级和放射组学模型相比,联合模型对PCa患者的ECE具有令人满意的预测价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/748a/10425641/a6eb925b412c/tcr-12-07-1787-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验