Suppr超能文献

基于 MRI 的机器学习预测前列腺癌囊外侵犯(ECE):一项系统文献综述的方案。

Machine learning in predicting extracapsular extension (ECE) of prostate cancer with MRI: a protocol for a systematic literature review.

机构信息

Radiology, Hospital da Luz, Lisboa, Portugal

Radiology, Centro Hospitalar Universitário de São João, Porto, Portugal.

出版信息

BMJ Open. 2022 May 6;12(5):e052342. doi: 10.1136/bmjopen-2021-052342.

Abstract

INTRODUCTION

In patients with prostate cancer (PCa), the detection of extracapsular extension (ECE) and seminal vesicle invasion is not only important for selecting the appropriate therapy but also for preoperative planning and patient prognosis. It is of paramount importance to stage PCa correctly before surgery, in order to achieve better surgical and outcome results. Over the last years, MRI has been incorporated in the classical prostate staging nomograms with clinical improvement accuracy in detecting ECE, but with variability between studies and radiologist's experience.

METHODS AND ANALYSIS

The research question, based on patient, index test, comparator, outcome and study design criteria, was the following: what is the diagnostic performance of artificial intelligence algorithms for predicting ECE in PCa patients, when compared with that of histopathological results after radical prostatectomy. To answer this question, we will use databases (EMBASE, PUBMED, Web of Science and CENTRAL) to search for the different studies published in the literature and we use the QUADA tool to evaluate the quality of the research selection.

ETHICS AND DISSEMINATION

This systematic review does not require ethical approval. The results will be disseminated through publication in a peer-review journal, as a chapter of a doctoral thesis and through presentations at national and international conferences.

PROSPERO REGISTRATION NUMBER

CRD42020215671.

摘要

简介

在前列腺癌(PCa)患者中,检测包膜外侵犯(ECE)和精囊侵犯不仅对选择适当的治疗方法很重要,而且对术前规划和患者预后也很重要。在手术前正确分期 PCa 至关重要,以便获得更好的手术和结果。在过去的几年中,MRI 已被纳入经典的前列腺分期列线图中,在检测 ECE 方面提高了临床准确性,但研究之间和放射科医生经验存在差异。

方法和分析

研究问题基于患者、指标测试、比较、结果和研究设计标准,如下:人工智能算法在预测 PCa 患者 ECE 方面的诊断性能如何,与根治性前列腺切除术后组织病理学结果相比。为了回答这个问题,我们将使用数据库(EMBASE、PUBMED、Web of Science 和 CENTRAL)搜索文献中发表的不同研究,并使用 QUADA 工具评估研究选择的质量。

伦理和传播

本系统评价不需要伦理批准。结果将通过在同行评审期刊上发表、作为博士论文的一章以及在国内外会议上发表来传播。

PROSPERO 注册号:CRD42020215671。

相似文献

本文引用的文献

3
MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis.MRI 靶向或标准活检用于前列腺癌诊断。
N Engl J Med. 2018 May 10;378(19):1767-1777. doi: 10.1056/NEJMoa1801993. Epub 2018 Mar 18.
8
Artificial Intelligence: Threat or Boon to Radiologists?人工智能:对放射科医生来说是威胁还是福音?
J Am Coll Radiol. 2017 Nov;14(11):1476-1480. doi: 10.1016/j.jacr.2017.07.007. Epub 2017 Aug 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验