Khatibi Seyed Mahdi Hosseiniyan, Ali Jauhar
Rice Breeding Platform, International Rice Research Institute, Los Baños, Laguna, Philippines.
Front Plant Sci. 2024 Aug 12;15:1417912. doi: 10.3389/fpls.2024.1417912. eCollection 2024.
Crop improvement and production domains encounter large amounts of expanding data with multi-layer complexity that forces researchers to use machine-learning approaches to establish predictive and informative models to understand the sophisticated mechanisms underlying these processes. All machine-learning approaches aim to fit models to target data; nevertheless, it should be noted that a wide range of specialized methods might initially appear confusing. The principal objective of this study is to offer researchers an explicit introduction to some of the essential machine-learning approaches and their applications, comprising the most modern and utilized methods that have gained widespread adoption in crop improvement or similar domains. This article explicitly explains how different machine-learning methods could be applied for given agricultural data, highlights newly emerging techniques for machine-learning users, and lays out technical strategies for agri/crop research practitioners and researchers.
作物改良和生产领域面临着大量不断扩展且具有多层次复杂性的数据,这迫使研究人员使用机器学习方法来建立预测性和信息性模型,以理解这些过程背后的复杂机制。所有机器学习方法的目标都是使模型与目标数据相拟合;然而,应该注意的是,一系列专门方法最初可能会让人感到困惑。本研究的主要目的是向研究人员明确介绍一些基本的机器学习方法及其应用,包括在作物改良或类似领域中广泛采用的最现代和最常用的方法。本文明确解释了如何将不同的机器学习方法应用于给定的农业数据,向机器学习用户强调了新出现的技术,并为农业/作物研究从业者和研究人员制定了技术策略。