Suppr超能文献

一种在临床环境中利用机器学习和不平衡数据处理的早期脓毒症预测模型。

An early sepsis prediction model utilizing machine learning and unbalanced data processing in a clinical context.

作者信息

Zhou Luyao, Shao Min, Wang Cui, Wang Yu

机构信息

School of Biomedical Engineering, Anhui Medical University, Hefei, China.

Department of Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China.

出版信息

Prev Med Rep. 2024 Aug 2;45:102841. doi: 10.1016/j.pmedr.2024.102841. eCollection 2024 Sep.

Abstract

BACKGROUND

Early and accurate diagnoses of sepsis patients are essential to reduce the mortality. However, the sepsis is still diagnosed in a traditional way in China despite the increasing number of related studies, which may to some extent lead to delays in the treatment.

METHODS

The study included 2,385 patients, including 364 with sepsis, collected from the First Affiliated Hospital of Anhui Medical University and partner hospitals from April to July 2022. External validation was conducted using the MIMIC-III database (over 60,000 patients from 2001 to 2012) and the eICU Collaborative Research Database (139,000 patients from 2014 to 2015). Multiple algorithm models, along with the SHapley Additive exPlanations (SHAP) analysis, are applied to explore the main risk factors for the accurate prediction of the sepsis. Multiple Imputations for filling missing data and the Synthetic Minority Oversampling (SMOTE) balancing method for balancing data are used for the data processing.

RESULT

Eighteen diagnostic features are used in the predictive model for early sepsis. The Random Forest model has the best performance among all the models, with an Area Under the Curve (AUC) of 87% and an F1-score (F1) of 77%. Moreover, the interpretation from the SHAP analysis is generally consistent with the current clinical situation.

CONCLUSION

The study revealed the relationship between these 18 clinical features and diagnostic outcomes. The results indicate that patients with laboratory values of Systolic Blood Pressure, Albumin, and Heart Rate exceeding certain thresholds are at a high likelihood of developing sepsis.

摘要

背景

对脓毒症患者进行早期准确诊断对于降低死亡率至关重要。然而,尽管相关研究数量不断增加,但在中国脓毒症仍以传统方式进行诊断,这在一定程度上可能导致治疗延误。

方法

该研究纳入了2022年4月至7月从安徽医科大学第一附属医院及其合作医院收集的2385例患者,其中包括364例脓毒症患者。使用MIMIC-III数据库(2001年至2012年的60000多名患者)和eICU协作研究数据库(2014年至2015年的139000名患者)进行外部验证。应用多种算法模型以及SHapley加性解释(SHAP)分析来探索准确预测脓毒症的主要危险因素。数据处理采用多重填补缺失数据的方法和合成少数过采样技术(SMOTE)平衡数据的方法。

结果

早期脓毒症预测模型使用了18个诊断特征。随机森林模型在所有模型中表现最佳,曲线下面积(AUC)为87%,F1分数(F1)为77%。此外,SHAP分析的解释与当前临床情况基本一致。

结论

该研究揭示了这18个临床特征与诊断结果之间的关系。结果表明,收缩压、白蛋白和心率的实验室值超过特定阈值的患者发生脓毒症的可能性很高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5caf/11345914/2e6be7975fba/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验