Yau Mathematical Sciences Center, Tsinghua University, Beijing, China.
School of Life Science, Tsinghua University, Beijing, China.
Commun Biol. 2024 Aug 27;7(1):1058. doi: 10.1038/s42003-024-06739-9.
Cryogenic electron microscopy (cryo-EM) has revolutionized structural biology, enabling efficient determination of structures at near-atomic resolutions. However, a common challenge arises from the severe imbalance among various conformations of vitrified particles, leading to low-resolution reconstructions in rare conformations due to a lack of particle images in these quasi-stable states. We introduce CryoTRANS, a method that predicts high-resolution maps of rare conformations by constructing a self-supervised pseudo-trajectory between density maps of varying resolutions. This trajectory is represented by an ordinary differential equation parameterized by a deep neural network, ensuring retention of detailed structures from high-resolution density maps. By leveraging a single high-resolution density map, CryoTRANS significantly improves the reconstruction of rare conformations and has been validated on four real-world datasets: alpha-2-macroglobulin, actin-binding protein complexes, SARS-CoV-2 spike glycoprotein, and the 70S ribosome. CryoTRANS can also predict high-resolution structures in cryogenic electron tomography maps using a high-resolution cryo-EM map.
低温电子显微镜(cryo-EM)技术已经彻底改变了结构生物学领域,使我们能够以接近原子分辨率的精度高效地确定结构。然而,一个普遍存在的挑战是,玻璃态粒子的各种构象之间存在严重的不平衡,导致在稀有构象中得到低分辨率的重建,因为在这些准稳定状态下缺乏粒子图像。我们引入了 CryoTRANS 方法,该方法通过在不同分辨率的密度图之间构建自监督的伪轨迹来预测稀有构象的高分辨率图谱。该轨迹由一个通过深度神经网络参数化的常微分方程表示,从而确保从高分辨率密度图中保留详细的结构信息。通过利用单个高分辨率密度图,CryoTRANS 可以显著改善稀有构象的重建效果,并已在四个真实数据集上得到验证:α-2-巨球蛋白、肌动蛋白结合蛋白复合物、SARS-CoV-2 刺突糖蛋白和 70S 核糖体。CryoTRANS 还可以使用高分辨率 cryo-EM 图谱来预测低温电子断层扫描图谱中的高分辨率结构。