Suppr超能文献

冷冻电镜中异质重建的摊销推理

Amortized Inference for Heterogeneous Reconstruction in Cryo-EM.

作者信息

Levy Axel, Wetzstein Gordon, Martel Julien, Poitevin Frédéric, Zhong Ellen D

机构信息

Stanford University.

SLAC National Accelerator Laboratory.

出版信息

Adv Neural Inf Process Syst. 2022 Dec;35:13038-13049.

Abstract

Cryo-electron microscopy (cryo-EM) is an imaging modality that provides unique insights into the dynamics of proteins and other building blocks of life. The algorithmic challenge of jointly estimating the poses, 3D structure, and conformational heterogeneity of a biomolecule from millions of noisy and randomly oriented 2D projections in a computationally efficient manner, however, remains unsolved. Our method, cryoFIRE, performs heterogeneous reconstruction with unknown poses in an amortized framework, thereby avoiding the computationally expensive step of pose search while enabling the analysis of conformational heterogeneity. Poses and conformation are jointly estimated by an encoder while a physics-based decoder aggregates the images into an implicit neural representation of the conformational space. We show that our method can provide one order of magnitude speedup on datasets containing millions of images without any loss of accuracy. We validate that the joint estimation of poses and conformations can be amortized over the size of the dataset. For the first time, we prove that an amortized method can extract interpretable dynamic information from experimental datasets.

摘要

冷冻电子显微镜(cryo-EM)是一种成像方式,能为蛋白质及其他生命构建模块的动力学提供独特见解。然而,如何以计算高效的方式从数百万个有噪声且随机取向的二维投影中联合估计生物分子的姿态、三维结构和构象异质性,这一算法挑战仍未解决。我们的方法cryoFIRE在摊销框架中对未知姿态进行异质重建,从而避免了计算成本高昂的姿态搜索步骤,同时能够分析构象异质性。姿态和构象由一个编码器联合估计,而基于物理的解码器将图像聚合为构象空间的隐式神经表示。我们表明,我们的方法在包含数百万张图像的数据集上能实现一个数量级的加速,且不会损失任何准确性。我们验证了姿态和构象的联合估计可以在数据集大小上进行摊销。首次,我们证明了一种摊销方法可以从实验数据集中提取可解释的动态信息。

相似文献

7
Ensemble Reweighting Using Cryo-EM Particle Images.基于冷冻电镜粒子图像的集合再加权。
J Phys Chem B. 2023 Jun 22;127(24):5410-5421. doi: 10.1021/acs.jpcb.3c01087. Epub 2023 Jun 9.

引用本文的文献

3
Efficient high-resolution refinement in cryo-EM with stochastic gradient descent.利用随机梯度下降实现冷冻电镜中的高效高分辨率细化
Acta Crystallogr D Struct Biol. 2025 Jul 1;81(Pt 7):327-343. doi: 10.1107/S205979832500511X. Epub 2025 Jun 23.
5
InstaMap: instant-NGP for cryo-EM density maps.InstaMap:用于冷冻电镜密度图的即时神经图形处理器
Acta Crystallogr D Struct Biol. 2025 Apr 1;81(Pt 4):147-169. doi: 10.1107/S2059798325002025. Epub 2025 Mar 26.

本文引用的文献

5
Harmony: A Generic Unsupervised Approach for Disentangling Semantic Content from Parameterized Transformations.Harmony:一种从参数化变换中分离语义内容的通用无监督方法。
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2022 Jun;2022:20614-20623. doi: 10.1109/cvpr52688.2022.01999. Epub 2022 Sep 27.
8
Computational Methods for Single-Particle Electron Cryomicroscopy.单颗粒电子冷冻显微镜的计算方法。
Annu Rev Biomed Data Sci. 2020 Jul;3:163-190. doi: 10.1146/annurev-biodatasci-021020-093826. Epub 2020 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验