Levy Axel, Wetzstein Gordon, Martel Julien, Poitevin Frédéric, Zhong Ellen D
Stanford University.
SLAC National Accelerator Laboratory.
Adv Neural Inf Process Syst. 2022 Dec;35:13038-13049.
Cryo-electron microscopy (cryo-EM) is an imaging modality that provides unique insights into the dynamics of proteins and other building blocks of life. The algorithmic challenge of jointly estimating the poses, 3D structure, and conformational heterogeneity of a biomolecule from millions of noisy and randomly oriented 2D projections in a computationally efficient manner, however, remains unsolved. Our method, cryoFIRE, performs heterogeneous reconstruction with unknown poses in an amortized framework, thereby avoiding the computationally expensive step of pose search while enabling the analysis of conformational heterogeneity. Poses and conformation are jointly estimated by an encoder while a physics-based decoder aggregates the images into an implicit neural representation of the conformational space. We show that our method can provide one order of magnitude speedup on datasets containing millions of images without any loss of accuracy. We validate that the joint estimation of poses and conformations can be amortized over the size of the dataset. For the first time, we prove that an amortized method can extract interpretable dynamic information from experimental datasets.
冷冻电子显微镜(cryo-EM)是一种成像方式,能为蛋白质及其他生命构建模块的动力学提供独特见解。然而,如何以计算高效的方式从数百万个有噪声且随机取向的二维投影中联合估计生物分子的姿态、三维结构和构象异质性,这一算法挑战仍未解决。我们的方法cryoFIRE在摊销框架中对未知姿态进行异质重建,从而避免了计算成本高昂的姿态搜索步骤,同时能够分析构象异质性。姿态和构象由一个编码器联合估计,而基于物理的解码器将图像聚合为构象空间的隐式神经表示。我们表明,我们的方法在包含数百万张图像的数据集上能实现一个数量级的加速,且不会损失任何准确性。我们验证了姿态和构象的联合估计可以在数据集大小上进行摊销。首次,我们证明了一种摊销方法可以从实验数据集中提取可解释的动态信息。