Omari Sara, Omari Adil, Abu-Dakka Fares, Abderrahim Mohamed
Department of System Engineering and Automation, University Carlos III of Madrid, Avda de la Universidad 30, 28911 Leganes, Spain.
Department of Signal Theory and Communications, University Carlos III of Madrid, Avda de la Universidad 30, 28911 Leganes, Spain.
Biomimetics (Basel). 2024 Jul 27;9(8):459. doi: 10.3390/biomimetics9080459.
Individuals grappling with severe central nervous system injuries often face significant challenges related to sensorimotor function and communication abilities. In response, brain-computer interface (BCI) technology has emerged as a promising solution by offering innovative interaction methods and intelligent rehabilitation training. By leveraging electroencephalographic (EEG) signals, BCIs unlock intriguing possibilities in patient care and neurological rehabilitation. Recent research has utilized covariance matrices as signal descriptors. In this study, we introduce two methodologies for covariance matrix analysis: multiple tangent space projections (M-TSPs) and Cholesky decomposition. Both approaches incorporate a classifier that integrates linear and nonlinear features, resulting in a significant enhancement in classification accuracy, as evidenced by meticulous experimental evaluations. The M-TSP method demonstrates superior performance with an average accuracy improvement of 6.79% over Cholesky decomposition. Additionally, a gender-based analysis reveals a preference for men in the obtained results, with an average improvement of 9.16% over women. These findings underscore the potential of our methodologies to improve BCI performance and highlight gender-specific performance differences to be examined further in our future studies.
患有严重中枢神经系统损伤的个体通常在感觉运动功能和沟通能力方面面临重大挑战。作为应对措施,脑机接口(BCI)技术通过提供创新的交互方法和智能康复训练,已成为一种有前景的解决方案。通过利用脑电图(EEG)信号,BCI在患者护理和神经康复方面开启了引人入胜的可能性。最近的研究将协方差矩阵用作信号描述符。在本研究中,我们介绍了两种协方差矩阵分析方法:多重切空间投影(M-TSP)和乔列斯基分解。这两种方法都包含一个整合了线性和非线性特征的分类器,经过细致的实验评估证明,这显著提高了分类准确率。M-TSP方法表现出卓越性能,与乔列斯基分解相比,平均准确率提高了6.79%。此外,基于性别的分析显示,在所得结果中男性更具优势,与女性相比平均提高了9.16%。这些发现强调了我们的方法在改善BCI性能方面的潜力,并突出了性别特异性性能差异,有待我们在未来研究中进一步探讨。