Ciocan Lucian Toma, Vasilescu Vlad Gabriel, Pantea Mihaela, Pițuru Silviu Mirel, Imre Marina, Ripszky Totan Alexandra, Froimovici Florin Octavian
Discipline of Dental Prosthetics Technology, Faculty of Dentistry, "Carol Davila" University of Medicine and Pharmacy, Dionisie Lupu Street, No. 37, District 2, 020021 Bucharest, Romania.
Discipline of Prosthodontics, Faculty of Dentistry, "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 2, 020021 Bucharest, Romania.
J Funct Biomater. 2024 Jul 29;15(8):210. doi: 10.3390/jfb15080210.
In contemporary dentistry, several 3D printing techniques, including a stereolithography apparatus (SLA), digital light processing (DLP), liquid crystal display (LCD), and PolyJet 3D inkjet printing technology (PolyJet), are employed for model production. Despite their widespread use, there remains a paucity of the literature regarding the trueness and precision of these devices in dental applications. Existing studies comparing the accuracy of dental models manufactured by different printing technologies yield disparate conclusions regarding dental prosthesis manufacturing. This study aimed to test two null hypotheses: first, that the trueness of various new-generation 3D printers is equivalent, and second, that the trueness of printing by these printers is sufficient for achieving high-precision mastercasts in dental prosthodontics manufacturing. The research focuses on evaluating the trueness of five contemporary dental 3D printers: Anycubic Mono X 6Ks (Hongkong Anycubic Technology Co., Hongkong, China), Asiga Max (Asiga, Sydney, Australia), Creo C5 (Planmeca Oy, Helsinki, Finland), Form 3B (Formlabs, Boston, MA, USA), and J5 Dentajet (Stratasys Ltd., Eden Prairie, MN, USA). The methodology employed involved the creation of a digital test object using Blender software, adhering meticulously to the dimensions outlined in ISO standard 20896-1. These dimensions were chosen to be both relevant for this study and representative of clinical scenarios. Subsequently, the test object was printed and precise measurements were conducted utilizing a metrology-type Nikon XTH225 ST Reflection target in conjunction with VGStudio MAX analysis software. The results of our investigation revealed clinically negligible deviations in ball dimensions across all printers, with the maximum observed deviations ranging between 1.17% and 2.03% (notably observed in the Creo C5 printer). Transversal distortion exhibited variance based on the linear accuracy of each printer, with Stratasys21 and Formlabs 3B demonstrating superior accuracy among the evaluated printers. Distortions in the analyzed dimensions (specifically, anterior b-c, posterior a-d, and oblique a-c) were found to be uniform. In conclusion, while the first null hypothesis was rejected, indicating variations in trueness among the 3D printers assessed, our findings affirm the suitability of all five analyzed 3D printers for clinical applications. Consequently, these printers can be utilized for the fabrication of high-precision mastercasts in dental prosthodontics manufacturing.
在当代牙科领域,几种3D打印技术,包括立体光刻设备(SLA)、数字光处理(DLP)、液晶显示器(LCD)和PolyJet 3D喷墨打印技术(PolyJet),被用于模型制作。尽管它们被广泛使用,但关于这些设备在牙科应用中的真实性和精度的文献仍然匮乏。现有的比较不同打印技术制造的牙科模型准确性的研究,在假牙制造方面得出了不同的结论。本研究旨在检验两个零假设:第一,各种新一代3D打印机的真实性是等效的;第二,这些打印机的打印真实性足以在牙科修复体制造中获得高精度的母模。该研究重点评估五台当代牙科3D打印机的真实性:Anycubic Mono X 6Ks(中国香港Anycubic Technology Co.,中国香港)、Asiga Max(Asiga,澳大利亚悉尼)、Creo C5(芬兰赫尔辛基Planmeca Oy)、Form 3B(美国马萨诸塞州波士顿Formlabs)和J5 Dentajet(美国明尼苏达州伊登普雷里Stratasys Ltd.)。所采用的方法包括使用Blender软件创建一个数字测试对象,严格遵循ISO标准20896-1中规定的尺寸。选择这些尺寸既与本研究相关,又能代表临床场景。随后,打印测试对象,并使用计量型尼康XTH225 ST反射靶结合VGStudio MAX分析软件进行精确测量。我们的调查结果显示,所有打印机的球尺寸偏差在临床上可忽略不计,观察到的最大偏差在1.17%至2.03%之间(在Creo C5打印机中尤为明显)。横向变形根据每台打印机的线性精度表现出差异,在评估的打印机中,Stratasys21和Formlabs 3B表现出更高的精度。分析尺寸(具体为前b-c、后a-d和斜a-c)的变形是均匀的。总之,如果第一个无效假设被拒绝,表明在评估的3D打印机之间真实性存在差异,我们的研究结果证实了所有五台分析的3D打印机都适用于临床应用。因此,这些打印机可用于牙科修复体制造中的高精度母模制作。