Department of Computer Science and Engineering, Jadavpur University, 188 Raja S C Mallick Rd, Kolkata, 700032, West Bengal, India.
Department of Metallurgical and Material Engineering, Jadavpur University, 188 Raja S C Mallick Rd, Kolkata, 700032, West Bengal, India.
Comput Methods Programs Biomed. 2022 Jun;219:106776. doi: 10.1016/j.cmpb.2022.106776. Epub 2022 Mar 30.
Cervical cancer is one of the leading causes of women's death. Like any other disease, cervical cancer's early detection and treatment with the best possible medical advice are the paramount steps that should be taken to ensure the minimization of after-effects of contracting this disease. PaP smear images are one the most effective ways to detect the presence of such type of cancer. This article proposes a fuzzy distance-based ensemble approach composed of deep learning models for cervical cancer detection in PaP smear images.
We employ three transfer learning models for this task: Inception V3, MobileNet V2, and Inception ResNet V2, with additional layers to learn data-specific features. To aggregate the outcomes of these models, we propose a novel ensemble method based on the minimization of error values between the observed and the ground-truth. For samples with multiple predictions, we first take three distance measures, i.e., Euclidean, Manhattan (City-Block), and Cosine, for each class from their corresponding best possible solution. We then defuzzify these distance measures using the product rule to calculate the final predictions.
In the current experiments, we have achieved 95.30%, 93.92%, and 96.44% respectively when Inception V3, MobileNet V2, and Inception ResNet V2 run individually. After applying the proposed ensemble technique, the performance reaches 96.96% which is higher than the individual models.
Experimental outcomes on three publicly available datasets ensure that the proposed model presents competitive results compared to state-of-the-art methods. The proposed approach provides an end-to-end classification technique to detect cervical cancer from PaP smear images. This may help the medical professionals for better treatment of the cervical cancer. Thus increasing the overall efficiency in the whole testing process. The source code of the proposed work can be found in github.com/rishavpramanik/CervicalFuzzyDistanceEnsemble.
宫颈癌是导致女性死亡的主要原因之一。与其他任何疾病一样,宫颈癌的早期检测和治疗,以及获得最佳医疗建议,是确保最大限度减少感染这种疾病的后遗症的首要步骤。巴氏涂片图像是检测此类癌症的最有效方法之一。本文提出了一种基于模糊距离的集成方法,该方法由深度学习模型组成,用于巴氏涂片图像中的宫颈癌检测。
我们为此任务使用了三个迁移学习模型:Inception V3、MobileNet V2 和 Inception ResNet V2,并添加了额外的层来学习数据特定的特征。为了聚合这些模型的结果,我们提出了一种新的集成方法,该方法基于最小化观测值和真实值之间的误差值。对于具有多个预测的样本,我们首先为每个类从其最佳可能解决方案中获取三个距离度量,即欧几里得距离、曼哈顿距离(城市街区距离)和余弦距离。然后,我们使用乘积规则对这些距离度量进行去模糊化,以计算最终预测。
在当前的实验中,当 Inception V3、MobileNet V2 和 Inception ResNet V2 分别运行时,我们分别达到了 95.30%、93.92%和 96.44%的准确率。在应用所提出的集成技术后,性能达到了 96.96%,高于单个模型。
在三个公开可用的数据集上的实验结果表明,与最先进的方法相比,所提出的模型具有竞争力的结果。所提出的方法提供了一种端到端的分类技术,用于从巴氏涂片图像中检测宫颈癌。这可能有助于医疗专业人员更好地治疗宫颈癌,从而提高整个测试过程的整体效率。所提出工作的源代码可以在 github.com/rishavpramanik/CervicalFuzzyDistanceEnsemble 找到。