Suppr超能文献

基于机器学习方法的拟南芥部分性状全基因组预测比较。

Comparison of machine learning methods for genomic prediction of selected Arabidopsis thaliana traits.

机构信息

Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.

出版信息

PLoS One. 2024 Aug 28;19(8):e0308962. doi: 10.1371/journal.pone.0308962. eCollection 2024.

Abstract

We present a comparison of machine learning methods for the prediction of four quantitative traits in Arabidopsis thaliana. High prediction accuracies were achieved on individuals grown under standardized laboratory conditions from the 1001 Arabidopsis Genomes Project. An existing body of evidence suggests that linear models may be impeded by their inability to make use of non-additive effects to explain phenotypic variation at the population level. The results presented here use a nested cross-validation approach to confirm that some machine learning methods have the ability to statistically outperform linear prediction models, with the optimal model dependent on availability of training data and genetic architecture of the trait in question. Linear models were competitive in their performance as per previous work, though the neural network class of predictors was observed to be the most accurate and robust for traits with high heritability. The extent to which non-linear models exploit interaction effects will require further investigation of the causal pathways that lay behind their predictions. Future work utilizing more traits and larger sample sizes, combined with an improved understanding of their respective genetic architectures, may lead to improvements in prediction accuracy.

摘要

我们比较了机器学习方法在拟南芥四个数量性状预测中的应用。在标准化实验室条件下,从 1001 个拟南芥基因组项目中生长的个体上,实现了较高的预测精度。现有的证据表明,线性模型可能会受到限制,因为它们无法利用非加性效应来解释群体水平的表型变异。本文使用嵌套交叉验证方法来证实,一些机器学习方法具有统计学上优于线性预测模型的能力,最佳模型取决于训练数据的可用性和所研究性状的遗传结构。线性模型的表现与之前的工作相当,尽管神经网络类预测因子对于高遗传力的性状表现出最准确和最稳健的特点。非线性模型在多大程度上利用了相互作用效应,这需要进一步研究其预测背后的因果途径。未来的工作将利用更多的性状和更大的样本量,并结合对它们各自遗传结构的更好理解,可能会提高预测精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4526/11355539/2c2a2c3cd373/pone.0308962.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验