Suppr超能文献

基于公共标注数据集的自适应师生框架,实现对未经标注的私有数据中结肠息肉的分割。

Self-Adaptive Teacher-Student framework for colon polyp segmentation from unannotated private data with public annotated datasets.

机构信息

Department of Gastroenterology, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.

出版信息

PLoS One. 2024 Aug 28;19(8):e0307777. doi: 10.1371/journal.pone.0307777. eCollection 2024.

Abstract

Colon polyps have become a focal point of research due to their heightened potential to develop into appendiceal cancer, which has the highest mortality rate globally. Although numerous colon polyp segmentation methods have been developed using public polyp datasets, they tend to underperform on private datasets due to inconsistencies in data distribution and the difficulty of fine-tuning without annotations. In this paper, we propose a Self-Adaptive Teacher-Student (SATS) framework to segment colon polyps from unannotated private data by utilizing multiple publicly annotated datasets. The SATS trains multiple teacher networks on public datasets and then generates pseudo-labels on private data to assist in training a student network. To enhance the reliability of the pseudo-labels from the teacher networks, the SATS includes a newly proposed Uncertainty and Distance Fusion (UDFusion) strategy. UDFusion dynamically adjusts the pseudo-label weights based on a novel reconstruction similarity measure, innovatively bridging the gap between private and public data distributions. To ensure accurate identification and segmentation of colon polyps, the SATS also incorporates a Granular Attention Network (GANet) architecture for both teacher and student networks. GANet first identifies polyps roughly from a global perspective by encoding long-range anatomical dependencies and then refines this identification to remove false-positive areas through multi-scale background-foreground attention. The SATS framework was validated using three public datasets and one private dataset, achieving 76.30% on IoU, 86.00% on Recall, and 7.01 pixels on HD. These results outperform the existing five methods, indicating the effectiveness of this approach for colon polyp segmentation.

摘要

结肠息肉由于其发展为阑尾癌的潜在风险而成为研究焦点,阑尾癌的死亡率在全球范围内最高。尽管已经使用公共息肉数据集开发了许多结肠息肉分割方法,但由于数据分布不一致以及在没有注释的情况下进行微调的困难,它们在私有数据集中的性能往往不佳。在本文中,我们提出了一种自适师生 (SATS) 框架,通过利用多个公共注释数据集从未注释的私有数据中分割结肠息肉。SATS 在公共数据集上训练多个教师网络,然后在私有数据上生成伪标签,以协助训练学生网络。为了提高教师网络生成的伪标签的可靠性,SATS 包括一个新提出的不确定性和距离融合 (UDFusion) 策略。UDFusion 根据一种新颖的重建相似度度量,动态调整伪标签权重,创新性地弥合了私有和公共数据分布之间的差距。为了确保准确识别和分割结肠息肉,SATS 还为教师和学生网络合并了一个粒度注意力网络 (GANet) 架构。GANet 首先通过编码长程解剖依赖性从全局角度粗略识别息肉,然后通过多尺度背景-前景注意力细化此识别以去除假阳性区域。SATS 框架使用三个公共数据集和一个私有数据集进行验证,在 IoU 上达到 76.30%,在召回率上达到 86.00%,在 HD 上达到 7.01 像素。这些结果优于现有的五种方法,表明该方法在结肠息肉分割方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3299/11356409/b450cabf4e76/pone.0307777.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验