Suppr超能文献

DAN-PD:用于息肉分割的具有并行解码器的域自适应网络。

DAN-PD: Domain adaptive network with parallel decoder for polyp segmentation.

作者信息

Hu Jiaqi, Xu Yongqin, Tang Zhixian

机构信息

University of Shanghai for Science and Technology, No. 516, Jungong Rd., Shanghai, 200093, Shanghai, China.

College of Medical Imaging, Shanghai University of Medicine and Health Sciences, No. 279, Zhouzhu Rd., Shanghai, 201318, Shanghai, China.

出版信息

Comput Med Imaging Graph. 2022 Oct;101:102124. doi: 10.1016/j.compmedimag.2022.102124. Epub 2022 Sep 21.

Abstract

Endoscopy is essential for polyp diagnosis and prevention of colorectal cancer. Many deep learning methods have been proposed to perform automatic semantic segmentation of polyps in endoscopic images. However, labeled training images are always scarce, and the styles of endoscopic images from different medical centers vary greatly. The annotation of medical images requires much effort, and how to make more efficient utilization of the existing labeled data is becoming an increasingly critical issue. Considering the characteristics of polyp segmentation tasks and the need for generalization, we proposed a novel method named DAN-PD based on the Vision Transformer. Moreover, we devised the Teacher Parallel Encoder (TPE) and the Domain-Aware Parallel Decoder (DAPD) for the model. Our design innovatively introduces Unsupervised Domain Adaptation (UDA) methods and adversarial learning strategies to the polyp segmentation task. We conducted four transfer learning experiments with three public polyp image datasets to examine the model's performance. The results shows that our proposed method is ahead of other methods in all experiments and reaches the state-of-the-art level.

摘要

内窥镜检查对于息肉诊断和预防结直肠癌至关重要。已经提出了许多深度学习方法来对内窥镜图像中的息肉进行自动语义分割。然而,带标注的训练图像总是很稀缺,并且来自不同医疗中心的内窥镜图像样式差异很大。医学图像的标注需要付出很多努力,如何更有效地利用现有的带标注数据正成为一个日益关键的问题。考虑到息肉分割任务的特点和泛化需求,我们基于视觉Transformer提出了一种名为DAN-PD的新方法。此外,我们为该模型设计了教师并行编码器(TPE)和域感知并行解码器(DAPD)。我们的设计创新性地将无监督域适应(UDA)方法和对抗学习策略引入到息肉分割任务中。我们使用三个公共息肉图像数据集进行了四次迁移学习实验,以检验该模型的性能。结果表明,我们提出的方法在所有实验中都领先于其他方法,并达到了当前的先进水平。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验