Suppr超能文献

基于自注意力深度神经网络的胸部 X 光片自动肺区分割。

Automatic Lung Segmentation on Chest X-rays Using Self-Attention Deep Neural Network.

机构信息

School of Computer Science and Engineering, Kyonggi University, Gyeonggi-do 16227, Korea.

出版信息

Sensors (Basel). 2021 Jan 7;21(2):369. doi: 10.3390/s21020369.

Abstract

Accurate identification of the boundaries of organs or abnormal objects (e.g., tumors) in medical images is important in surgical planning and in the diagnosis and prognosis of diseases. In this study, we propose a deep learning-based method to segment lung areas in chest X-rays. The novel aspect of the proposed method is the self-attention module, where the outputs of the channel and spatial attention modules are combined to generate attention maps, with each highlighting those regions of feature maps that correspond to "what" and "where" to attend in the learning process, respectively. Thereafter, the attention maps are multiplied element-wise with the input feature map, and the intermediate results are added to the input feature map again for residual learning. Using X-ray images collected from public datasets for training and evaluation, we applied the proposed attention modules to U-Net for segmentation of lung areas and conducted experiments while changing the locations of the attention modules in the baseline network. The experimental results showed that our method achieved comparable or better performance than the existing medical image segmentation networks in terms of Dice score when the proposed attention modules were placed in lower layers of both the contracting and expanding paths of U-Net.

摘要

在医学图像中准确识别器官或异常物体(例如肿瘤)的边界对于手术规划以及疾病的诊断和预后都非常重要。在本研究中,我们提出了一种基于深度学习的方法,用于分割胸部 X 光片中的肺部区域。所提出方法的新颖之处在于自注意力模块,其中通道和空间注意力模块的输出被组合以生成注意力图,每个注意力图分别突出特征图中对应于“什么”和“哪里”的学习过程中的区域。然后,将注意力图与输入特征图逐元素相乘,并将中间结果再次添加到输入特征图中进行残差学习。我们使用从公共数据集收集的 X 射线图像进行训练和评估,将所提出的注意力模块应用于 U-Net 以分割肺部区域,并在改变基线网络中注意力模块的位置的情况下进行实验。实验结果表明,当将所提出的注意力模块放置在 U-Net 的收缩和扩展路径的较低层时,我们的方法在 Dice 分数方面与现有的医学图像分割网络相比具有可比或更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/782e/7826788/f1573d2900fa/sensors-21-00369-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验