Palanisamy Kamini Kamakshi, Rengaraj Arthi
Department of ECE, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Ramapuram Campus, Ramapuram, Chennai 600089, India.
Brain Sci. 2024 Aug 22;14(8):848. doi: 10.3390/brainsci14080848.
In humans, epilepsy is diagnosed through electroencephalography (EEG) signals. Epileptic seizures (ESs) arise due to anxiety. The detection of anxiety-based seizures is challenging for radiologists, and there is a limited availability of anxiety-based EEG signals. Data augmentation methods are required to increase the number of novel samples. An epileptic seizure arises due to anxiety, which manifests as variations in EEG signal patterns consisting of changes in the size and shape of the signal. In this study, anxiety EEG signals were synthesized by applying data augmentation methods such as random data augmentation (RDA) to existing epileptic seizure signals from the Bonn EEG dataset. The data-augmented anxiety seizure signals were processed using three algorithms-(i) fuzzy C-means-particle swarm optimization-long short-term memory (FCM-PS-LSTM), (ii) particle swarm optimization-long short-term memory (PS-LSTM), and (iii) parrot optimization LSTM (PO-LSTM)-for the detection of anxiety ESs via EEG signals. The predicted accuracies of detecting ESs through EEG signals using the proposed algorithms-namely, (i) FCM-PS-LSTM, (ii) PS-LSTM, and (iii) PO-LSTM-were about 98%, 98.5%, and 96%, respectively.
在人类中,癫痫是通过脑电图(EEG)信号来诊断的。癫痫发作(ESs)是由焦虑引起的。对于放射科医生来说,检测基于焦虑的癫痫发作具有挑战性,而且基于焦虑的EEG信号的可用性有限。需要数据增强方法来增加新样本的数量。癫痫发作是由焦虑引起的,表现为EEG信号模式的变化,包括信号大小和形状的改变。在本研究中,通过对来自波恩EEG数据集的现有癫痫发作信号应用随机数据增强(RDA)等数据增强方法,合成了焦虑EEG信号。使用三种算法对数据增强后的焦虑癫痫发作信号进行处理——(i)模糊C均值-粒子群优化-长短期记忆(FCM-PS-LSTM)、(ii)粒子群优化-长短期记忆(PS-LSTM)和(iii)鹦鹉优化LSTM(PO-LSTM)——以通过EEG信号检测焦虑性癫痫发作。使用所提出的算法——即(i)FCM-PS-LSTM、(ii)PS-LSTM和(iii)PO-LSTM——通过EEG信号检测癫痫发作的预测准确率分别约为98%、98.5%和96%。