Suppr超能文献

一种用于特定频段振荡的新型时频参数化方法及其在光极脑磁图中的应用

A Novel Time-Frequency Parameterization Method for Oscillations in Specific Frequency Bands and Its Application on OPM-MEG.

作者信息

Liang Xiaoyu, Wang Ruonan, Wu Huanqi, Ma Yuyu, Liu Changzeng, Gao Yang, Yu Dexin, Ning Xiaolin

机构信息

School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China.

Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China.

出版信息

Bioengineering (Basel). 2024 Jul 31;11(8):773. doi: 10.3390/bioengineering11080773.

Abstract

Time-frequency parameterization for oscillations in specific frequency bands reflects the dynamic changes in the brain. It is related to cognitive behavior and diseases and has received significant attention in neuroscience. However, many studies do not consider the impact of the aperiodic noise and neural activity, including their time-varying fluctuations. Some studies are limited by the low resolution of the time-frequency spectrum and parameter-solved operation. Therefore, this paper proposes super-resolution time-frequency periodic parameterization of (transient) oscillation (STPPTO). STPPTO obtains a super-resolution time-frequency spectrum with Superlet transform. Then, the time-frequency representation of oscillations is obtained by removing the aperiodic component fitted in a time-resolved way. Finally, the definition of transient events is used to parameterize oscillations. The performance of this method is validated on simulated data and its reliability is demonstrated on magnetoencephalography. We show how it can be used to explore and analyze oscillatory activity under rhythmic stimulation.

摘要

特定频段振荡的时频参数化反映了大脑的动态变化。它与认知行为和疾病相关,在神经科学领域受到了广泛关注。然而,许多研究没有考虑非周期性噪声和神经活动的影响,包括它们随时间变化的波动。一些研究受到时频频谱分辨率低和参数求解操作的限制。因此,本文提出了(瞬态)振荡的超分辨率时频周期参数化(STPPTO)。STPPTO通过Superlet变换获得超分辨率时频频谱。然后,通过去除以时间分辨方式拟合的非周期性成分来获得振荡的时频表示。最后,使用瞬态事件的定义对振荡进行参数化。该方法的性能在模拟数据上得到了验证,其可靠性在脑磁图上得到了证明。我们展示了它如何用于探索和分析节律性刺激下的振荡活动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1e5/11351447/58f88d8029da/bioengineering-11-00773-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验