Suppr超能文献

物种丰富度、净初级生产力与水平衡问题。

Species Richness Net Primary Productivity and the Water Balance Problem.

作者信息

Hunt Allen G, Sahimi Muhammad, Newman Erica A

机构信息

Department of Physics, Wright State University, Dayton, OH 45435, USA.

Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

Entropy (Basel). 2024 Jul 28;26(8):641. doi: 10.3390/e26080641.

Abstract

Species energy theory suggests that, because of limitations on reproduction efficiency, a minimum density of plant individuals per viable species exists and that this minimum correlates the total number of plant individuals with the number of species . The simplest assumption is that the mean energy input per individual plant is independent of the number of individuals, making , and thus as well, proportional to the total energy input into the system. The primary energy input to a plant-dominated ecosystem is estimated as its Net Primary Productivity (). Thus, species energy theory draws a direct correspondence from to . Although investigations have verified a strong connection between and , strong influences of other factors, such as topography, ecological processes such as competition, and historical contingencies, are also at play. The lack of a simple model of expressed in terms of the principal climate variables, precipitation and potential evapotranspiration, , introduces unnecessary uncertainty to the understanding of species richness across scales. Recent research combines percolation theory with the principle of ecological optimality to derive an expression for (, ). Consistent with assuming S is proportional to , we show here that the new expression for (, ) predicts the number of plant species in an ecosystem as a function of and . As already demonstrated elsewhere, the results are consistent with some additional variation due to non-climatic inputs. We suggest that it may be easier to infer specific deviations from species energy predictions with increased accuracy and generality of the prediction of (, ).

摘要

物种能量理论认为,由于繁殖效率的限制,每个可行物种存在一个植物个体的最小密度,并且这个最小值将植物个体的总数与物种数量联系起来。最简单的假设是,每个植物个体的平均能量输入与个体数量无关,使得 ,进而 也与系统的总能量输入成正比。对以植物为主导的生态系统的主要能量输入估计为其净初级生产力()。因此,物种能量理论直接建立了从 到 的对应关系。尽管研究已经证实了 和 之间的紧密联系,但其他因素,如地形、竞争等生态过程以及历史偶然性,也发挥着重要影响。缺乏一个用主要气候变量降水量 和潜在蒸散量 表示的简单 模型,给跨尺度理解物种丰富度带来了不必要的不确定性。最近的研究将渗流理论与生态最优原则相结合,得出了一个关于 (,)的表达式。与假设 与 成正比一致,我们在此表明,关于 (,)的新表达式预测了生态系统中植物物种数量 是 和 的函数。正如在其他地方已经证明的那样,结果与由于非气候输入导致的一些额外变化一致。我们认为,随着对 (,)预测的准确性和普遍性的提高,可能更容易推断出与物种能量预测的具体偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5955/11353644/091efecde09c/entropy-26-00641-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验