Liao Li-Jen, Cheng Ping-Chia, Chan Feng-Tsan
Department of Otolaryngology Head and Neck Surgery, Far Eastern Memorial Hospital, New Taipei 220053, Taiwan.
Biomedical Engineering Office, Far Eastern Memorial Hospital, New Taipei 220053, Taiwan.
Diagnostics (Basel). 2024 Aug 13;14(16):1761. doi: 10.3390/diagnostics14161761.
Objective quantitative texture characteristics may be helpful in salivary glandular tumor differential diagnosis. This study uses machine learning (ML) to explore and validate the performance of ultrasound (US) texture features in diagnosing salivary glandular tumors.
122 patients with salivary glandular tumors, including 71 benign and 51 malignant tumors, are enrolled. Representative brightness mode US pictures are selected for further Gray Level Co-occurrence Matrix (GLCM) texture analysis. We use a -test to test the significance and use the receiver operating characteristic curve method to find the optimal cut-point for these significant features. After splitting 80% of the data into a training set and 20% data into a testing set, we use five machine learning models, k-nearest Neighbors (kNN), Naïve Bayes, Logistic regression, Artificial Neural Networks (ANNs) and supportive vector machine (SVM), to explore and validate the performance of US GLCM texture features in diagnosing salivary glandular tumors.
This study includes 49 female and 73 male patients, with a mean age of 53 years old, ranging from 21 to 93. We find that six GLCM texture features (contrast, inverse difference movement, entropy, dissimilarity, inverse difference and difference entropy) are significantly different between benign and malignant tumors ( < 0.05). In ML, the overall accuracy rates are 74.3% (95%CI: 59.8-88.8%), 94.3% (86.6-100%), 72% (54-89%), 84% (69.5-97.3%) and 73.5% (58.7-88.4%) for kNN, Naïve Bayes, Logistic regression, a one-node ANN and SVM, respectively.
US texture analysis with ML has potential as an objective and valuable tool to make a differential diagnosis between benign and malignant salivary gland tumors.
客观定量的纹理特征可能有助于涎腺肿瘤的鉴别诊断。本研究采用机器学习(ML)来探索和验证超声(US)纹理特征在诊断涎腺肿瘤中的性能。
纳入122例涎腺肿瘤患者,其中良性肿瘤71例,恶性肿瘤51例。选择代表性的亮度模式超声图像进行进一步的灰度共生矩阵(GLCM)纹理分析。我们使用t检验来检验显著性,并使用受试者工作特征曲线方法来找到这些显著特征的最佳切点。将80%的数据分为训练集,20%的数据分为测试集后,我们使用五种机器学习模型,即k近邻(kNN)、朴素贝叶斯、逻辑回归、人工神经网络(ANNs)和支持向量机(SVM),来探索和验证US GLCM纹理特征在诊断涎腺肿瘤中的性能。
本研究包括49例女性和73例男性患者,平均年龄53岁,年龄范围为21至93岁。我们发现,良性和恶性肿瘤之间的六个GLCM纹理特征(对比度、逆差运动、熵、相异性、逆差和差熵)存在显著差异(P<0.05)。在机器学习中,kNN、朴素贝叶斯、逻辑回归、单节点人工神经网络和支持向量机的总体准确率分别为74.3%(95%CI:59.8-88.8%)、94.3%(86.6-100%)、72%(54-89%)、84%(69.5-97.3%)和73.5%(58.7-88.4%)。
基于机器学习的超声纹理分析有潜力成为鉴别涎腺良恶性肿瘤的客观且有价值的工具。