Suppr超能文献

定量视网膜疾病 OCT 和 OCTA 图像生物标志物的框架。

The Framework of Quantifying Biomarkers of OCT and OCTA Images in Retinal Diseases.

机构信息

School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.

Hangzhou International Innovation Institute, Beihang University, Beijing 100191, China.

出版信息

Sensors (Basel). 2024 Aug 13;24(16):5227. doi: 10.3390/s24165227.

Abstract

Despite the significant advancements facilitated by previous research in introducing a plethora of retinal biomarkers, there is a lack of research addressing the clinical need for quantifying different biomarkers and prioritizing their importance for guiding clinical decision making in the context of retinal diseases. To address this issue, our study introduces a novel framework for quantifying biomarkers derived from optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) images in retinal diseases. We extract 452 feature parameters from five feature types, including local binary patterns (LBP) features of OCT and OCTA, capillary and large vessel features, and the foveal avascular zone (FAZ) feature. Leveraging this extensive feature set, we construct a classification model using a statistically relevant value for feature selection to predict retinal diseases. We obtain a high accuracy of 0.912 and F1-score of 0.906 in the task of disease classification using this framework. We find that OCT and OCTA's LBP features provide a significant contribution of 77.12% to the significance of biomarkers in predicting retinal diseases, suggesting their potential as latent indicators for clinical diagnosis. This study employs a quantitative analysis framework to identify potential biomarkers for retinal diseases in OCT and OCTA images. Our findings suggest that LBP parameters, skewness and kurtosis values of capillary, the maximum, mean, median, and standard deviation of large vessel, as well as the eccentricity, compactness, flatness, and anisotropy index of FAZ, may serve as significant indicators of retinal conditions.

摘要

尽管之前的研究在引入大量视网膜生物标志物方面取得了重大进展,但仍缺乏研究来解决量化不同生物标志物并确定其在指导视网膜疾病临床决策中的重要性的临床需求。为了解决这个问题,我们提出了一种新的框架,用于量化来自光学相干断层扫描(OCT)和光相干断层扫描血管造影(OCTA)图像的生物标志物在视网膜疾病中的应用。我们从五个特征类型中提取了 452 个特征参数,包括 OCT 和 OCTA 的局部二值模式(LBP)特征、毛细血管和大血管特征以及中心凹无血管区(FAZ)特征。利用这个广泛的特征集,我们构建了一个使用具有统计意义的 值进行特征选择的分类模型,以预测视网膜疾病。我们使用这个框架在疾病分类任务中获得了 0.912 的高准确率和 0.906 的 F1 分数。我们发现,OCT 和 OCTA 的 LBP 特征对预测视网膜疾病的生物标志物的重要性贡献了 77.12%,这表明它们作为临床诊断潜在指标的潜力。本研究采用定量分析框架来识别 OCT 和 OCTA 图像中视网膜疾病的潜在生物标志物。我们的研究结果表明,LBP 参数、毛细血管的偏度和峰度值、大血管的最大值、平均值、中位数和标准差以及 FAZ 的偏心度、紧凑度、平坦度和各向异性指数,可能是视网膜状况的重要指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087b/11359948/63e2452215ec/sensors-24-05227-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验