Dillen Arnau, Omidi Mohsen, Ghaffari Fakhreddine, Vanderborght Bram, Roelands Bart, Romain Olivier, Nowé Ann, De Pauw Kevin
Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Pleinlaan 2, Brussel, 1050, BELGIUM.
Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, Pleinlaan 2, Brussel, Brussel, 1050, BELGIUM.
J Neural Eng. 2024 Sep 25. doi: 10.1088/1741-2552/ad7f8d.
: Brain-computer interface (BCI) control systems monitor neural activity to detect the user's intentions, enabling device control through mental imagery. Despite their potential, decoding neural activity in real-world conditions poses significant challenges, making BCIs currently impractical compared to traditional interaction methods. This study introduces a novel motor imagery (MI) BCI control strategy for operating a physically assistive robotic arm, addressing the difficulties of MI decoding from electroencephalogram (EEG) signals, which are inherently non-stationary and vary across individuals. : A proof-of-concept BCI control system was developed using commercially available hardware, integrating MI with eye tracking in an augmented reality (AR) user interface to facilitate a shared control approach. This system proposes actions based on the user's gaze, enabling selection through imagined movements. A user study was conducted to evaluate the system's usability, focusing on its effectiveness and efficiency. Participants performed tasks that simulated everyday activities with the robotic arm, demonstrating the shared control system's feasibility and practicality in real-world scenarios. Despite low online decoding performance (mean accuracy: 0.52 9, F1: 0.29, Cohen's Kappa: 0.12), participants achieved a mean success rate of 0.83 in the final phase of the user study when given 15 minutes to complete the evaluation tasks. The success rate dropped below 0.5 when a 5-minute cutoff time was selected. : These results indicate that integrating AR and eye tracking can significantly enhance the usability of BCI systems, despite the complexities of MI-EEG decoding. While efficiency is still low, the effectiveness of our approach was verified. This suggests that BCI systems have the potential to become a viable interaction modality for everyday applications in the future.
脑机接口(BCI)控制系统监测神经活动以检测用户意图,从而通过心理意象实现设备控制。尽管具有潜力,但在现实世界条件下解码神经活动面临重大挑战,这使得与传统交互方法相比,目前BCI在实际应用中不太可行。本研究介绍了一种用于操作物理辅助机器人手臂的新型运动想象(MI)BCI控制策略,解决了从脑电图(EEG)信号中解码MI的困难,EEG信号本质上是非平稳的且因人而异。
开发了一个概念验证的BCI控制系统,使用市售硬件,在增强现实(AR)用户界面中将MI与眼动追踪相结合,以促进共享控制方法。该系统根据用户的注视提出动作建议,通过想象动作进行选择。进行了一项用户研究以评估该系统的可用性,重点关注其有效性和效率。
参与者执行了模拟使用机器人手臂进行日常活动的任务,证明了共享控制系统在现实场景中的可行性和实用性。尽管在线解码性能较低(平均准确率:0.52,F1值:0.29,科恩卡方系数:0.12),但在用户研究的最后阶段,当给予参与者15分钟完成评估任务时,他们的平均成功率达到了0.83。当选择5分钟的截止时间时,成功率降至0.5以下。
这些结果表明,尽管MI-EEG解码存在复杂性,但将AR和眼动追踪相结合可以显著提高BCI系统的可用性。虽然效率仍然较低,但我们方法的有效性得到了验证。这表明BCI系统在未来有可能成为日常应用中可行的交互方式。