PRISME Laboratory, University of Orleans, 12 Rue de Blois, 45100 Orleans, France.
Emka-Electronique Company, ZA du Patureau de la Grange, 41200 Pruniers-en-Sologne, France.
Sensors (Basel). 2024 Aug 16;24(16):5318. doi: 10.3390/s24165318.
The three Ground Reaction Force (GRF) components can be estimated using pressure insole sensors. In this paper, we compare the accuracy of estimating GRF components for both feet using six methods: three Deep Learning (DL) methods (Artificial Neural Network, Long Short-Term Memory, and Convolutional Neural Network) and three Supervised Machine Learning (SML) methods (Least Squares, Support Vector Regression, and Random Forest (RF)). Data were collected from nine subjects across six activities: normal and slow walking, static with and without carrying a load, and two Manual Material Handling activities. This study has two main contributions: first, the estimation of GRF components (Fx, Fy, and Fz) during the six activities, two of which have never been studied; second, the comparison of the accuracy of GRF component estimation between the six methods for each activity. RF provided the most accurate estimation for static situations, with mean RMSE values of RMSE_Fx = 1.65 N, RMSE_Fy = 1.35 N, and RMSE_Fz = 7.97 N for the mean absolute values measured by the force plate (reference) RMSE_Fx = 14.10 N, RMSE_Fy = 3.83 N, and RMSE_Fz = 397.45 N. In our study, we found that RF, an SML method, surpassed the experimented DL methods.
地面反作用力(GRF)的三个分量可以使用压力鞋垫传感器来估计。在本文中,我们比较了使用六种方法(人工神经网络、长短时记忆、卷积神经网络三种深度学习(DL)方法和最小二乘、支持向量回归、随机森林(RF)三种监督机器学习(SML)方法)来估计双脚 GRF 分量的准确性。数据来自九个在六种活动(正常和缓慢行走、静态和负重、两种手动搬运活动)下的受试者。本研究有两个主要贡献:首先,估计了六种活动中的 GRF 分量(Fx、Fy 和 Fz),其中有两个活动以前从未研究过;其次,比较了六种方法在每种活动中对 GRF 分量估计的准确性。RF 在静态情况下提供了最准确的估计,对于力板(参考)测量的平均绝对值,RMSE_Fx 的均方根误差值为 1.65 N,RMSE_Fy 的均方根误差值为 1.35 N,RMSE_Fz 的均方根误差值为 7.97 N。在我们的研究中,我们发现 RF 作为一种 SML 方法,超过了实验性的 DL 方法。