Suppr超能文献

一种使用带有三个单轴测力传感器的鞋子进行 3D 地面反作用力估计的深度学习模型。

A Deep Learning Model for 3D Ground Reaction Force Estimation Using Shoes with Three Uniaxial Load Cells.

机构信息

Department of Biomedical Engineering, Konkuk University, Chungju 27478, Republic of Korea.

BK21 Plus Research Institute of Biomedical Engineering, Konkuk University, Chungju 27478, Republic of Korea.

出版信息

Sensors (Basel). 2023 Mar 24;23(7):3428. doi: 10.3390/s23073428.

Abstract

Ground reaction force (GRF) is essential for estimating muscle strength and joint torque in inverse dynamic analysis. Typically, it is measured using a force plate. However, force plates have spatial limitations, and studies of gaits involve numerous steps and thus require a large number of force plates, which is disadvantageous. To overcome these challenges, we developed a deep learning model for estimating three-axis GRF utilizing shoes with three uniaxial load cells. GRF data were collected from 81 people as they walked on two force plates while wearing shoes with three load cells. The three-axis GRF was calculated using a seq2seq approach based on long short-term memory (LSTM). To conduct the learning, validation, and testing, random selection was performed based on the subjects. The 60 selected participants were divided as follows: 37 were in the training set, 12 were in the validation set, and 11 were in the test set. The estimated GRF matched the force plate-measured GRF with correlation coefficients of 0.97, 0.96, and 0.90 and root mean square errors of 65.12 N, 15.50 N, and 9.83 N for the vertical, anterior-posterior, and medial-lateral directions, respectively, and there was a mid-stance timing error of 5.61% in the test dataset. A Bland-Altman analysis showed good agreement for the maximum vertical GRF. The proposed shoe with three uniaxial load cells and seq2seq LSTM can be utilized for estimating the 3D GRF in an outdoor environment with level ground and/or for gait research in which the subject takes several steps at their preferred walking speed, and hence can supply crucial data for a basic inverse dynamic analysis.

摘要

地面反作用力(GRF)对于在逆动力学分析中估计肌肉力量和关节扭矩至关重要。通常,它是使用力板来测量的。然而,力板具有空间限制,并且步态研究涉及多个步骤,因此需要大量的力板,这是不利的。为了克服这些挑战,我们开发了一种使用带有三个单轴负载单元的鞋子来估计三轴 GRF 的深度学习模型。GRF 数据是从 81 个人在穿着带有三个负载单元的鞋子在两个力板上行走时收集的。三轴 GRF 使用基于长短期记忆(LSTM)的 seq2seq 方法计算。为了进行学习、验证和测试,根据受试者进行随机选择。从 60 名被选中的参与者中,以下是分组情况:37 人在训练集中,12 人在验证集中,11 人在测试集中。估计的 GRF 与力板测量的 GRF 匹配,相关系数分别为 0.97、0.96 和 0.90,垂直、前后和左右方向的均方根误差分别为 65.12 N、15.50 N 和 9.83 N,测试数据集中的中足时间误差为 5.61%。Bland-Altman 分析表明,最大垂直 GRF 具有良好的一致性。带有三个单轴负载单元和 seq2seq LSTM 的提议鞋可以用于在具有水平地面的户外环境中估计 3D GRF,或者用于步态研究,其中受试者以他们喜欢的步行速度走几步,因此可以为基本的逆动力学分析提供关键数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b54/10099259/a328846a9eb2/sensors-23-03428-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验