Suppr超能文献

基于病例的传染病监测中的挑战。

Challenges in the case-based surveillance of infectious diseases.

作者信息

Eales Oliver, McCaw James M, Shearer Freya M

机构信息

Infectious Disease Dynamics Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia.

School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia.

出版信息

R Soc Open Sci. 2024 Aug 28;11(8):240202. doi: 10.1098/rsos.240202. eCollection 2024 Aug.

Abstract

To effectively inform infectious disease control strategies, accurate knowledge of the pathogen's transmission dynamics is required. Since the timings of infections are rarely known, estimates of the infection incidence, which is crucial for understanding the transmission dynamics, often rely on measurements of other quantities amenable to surveillance. Case-based surveillance, in which infected individuals are identified by a positive test, is the predominant form of surveillance for many pathogens, and was used extensively during the COVID-19 pandemic. However, there can be many biases present in case-based surveillance indicators due to, for example test sensitivity, changing testing behaviours and the co-circulation of pathogens with similar symptom profiles. Here, we develop a mathematical description of case-based surveillance of infectious diseases. By considering realistic epidemiological parameters and situations, we demonstrate many of the potential biases in common surveillance indicators based on case-based surveillance data. Crucially, we find that many of these common surveillance indicators (e.g. case numbers, test-positive proportion) are heavily biased by circulating pathogens with similar symptom profiles. Future surveillance strategies could be designed to minimize these sources of bias and uncertainty, providing more accurate estimates of a pathogen's transmission dynamics and, ultimately, more targeted application of public health measures.

摘要

为了有效地为传染病控制策略提供信息,需要准确了解病原体的传播动态。由于感染时间很少为人所知,对于理解传播动态至关重要的感染发病率估计,通常依赖于对其他易于监测的量的测量。基于病例的监测,即通过阳性检测来识别感染者,是许多病原体监测的主要形式,并且在新冠疫情期间被广泛使用。然而,基于病例的监测指标可能存在许多偏差,例如由于检测灵敏度、不断变化的检测行为以及具有相似症状特征的病原体共同传播等原因。在这里,我们建立了传染病基于病例监测的数学描述。通过考虑现实的流行病学参数和情况,我们基于基于病例的监测数据展示了常见监测指标中许多潜在的偏差。至关重要的是,我们发现许多这些常见监测指标(例如病例数、检测阳性比例)受到具有相似症状特征的传播病原体的严重偏差影响。未来的监测策略可以设计为尽量减少这些偏差和不确定性来源,提供对病原体传播动态更准确的估计,并最终更有针对性地应用公共卫生措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b88/11349437/820b4e1d5c07/rsos.240202.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验