Suppr超能文献

气象因素的时空融合在多站点 PM2.5 预测中的应用:深度学习和时变图方法。

Spatio-temporal fusion of meteorological factors for multi-site PM2.5 prediction: A deep learning and time-variant graph approach.

机构信息

Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China; University of Chinese Academy of Sciences, Beijing, 100049, China.

Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China.

出版信息

Environ Res. 2023 Dec 15;239(Pt 1):117286. doi: 10.1016/j.envres.2023.117286. Epub 2023 Oct 4.

Abstract

In the field of environmental science, traditional methods for predicting PM2.5 concentrations primarily focus on singular temporal or spatial dimensions. This approach presents certain limitations when it comes to deeply mining the joint influence of multiple monitoring sites and their inherent connections with meteorological factors. To address this issue, we introduce an innovative deep-learning-based multi-graph model using Beijing as the study case. This model consists of two key modules: firstly, the 'Meteorological Factor Spatio-Temporal Feature Extraction Module'. This module deeply integrates spatio-temporal features of hourly meteorological data by employing Graph Convolutional Networks (GCN) and Long Short-Term Memory (LSTM) for spatial and temporal encoding respectively. Subsequently, through an attention mechanism, it retrieves a feature tensor associated with air pollutants. Secondly, these features are amalgamated with PM2.5 concentration values, allowing the 'PM2.5 Concentration Prediction Module' to predict with enhanced accuracy the joint influence across multiple monitoring sites. Our model exhibits significant advantages over traditional methods in processing the joint impact of multiple sites and their associated meteorological factors. By providing new perspectives and tools for the in-depth understanding of urban air pollutant distribution and optimization of air quality management, this model propels us towards a more comprehensive approach in tackling air pollution issues.

摘要

在环境科学领域,传统的 PM2.5 浓度预测方法主要集中在单一的时间或空间维度上。当涉及到深入挖掘多个监测站点及其与气象因素的内在联系的联合影响时,这种方法存在一定的局限性。为了解决这个问题,我们以北京为例,引入了一种基于深度学习的多图模型。该模型由两个关键模块组成:首先是“气象因素时空特征提取模块”。该模块通过使用图卷积网络(GCN)和长短时记忆网络(LSTM)分别对小时气象数据的时空特征进行深度集成,从而深入挖掘小时气象数据的时空特征。然后,通过注意力机制,它可以检索出与空气污染物相关的特征张量。其次,将这些特征与 PM2.5 浓度值进行融合,使得“PM2.5 浓度预测模块”能够更准确地预测多个监测站点之间的联合影响。与传统方法相比,我们的模型在处理多个站点及其相关气象因素的联合影响方面具有显著优势。通过为深入了解城市空气污染物分布和优化空气质量管理提供新的视角和工具,该模型推动我们朝着更全面的方法来解决空气污染问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验