Suppr超能文献

学习在线时间序列异常检测的特征分布相似性。

Learning the feature distribution similarities for online time series anomaly detection.

机构信息

Department of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Industrial Internet in Discrete Industries, Hangzhou Dianzi University, Hangzhou, China.

Department of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China.

出版信息

Neural Netw. 2024 Dec;180:106638. doi: 10.1016/j.neunet.2024.106638. Epub 2024 Aug 21.

Abstract

Identifying anomalies in multi-dimensional sequential data is crucial for ensuring optimal performance across various domains and in large-scale systems. Traditional contrastive methods utilize feature similarity between different features extracted from multidimensional raw inputs as an indicator of anomaly severity. However, the complex objective functions and meticulously designed modules of these methods often lead to efficiency issues and a lack of interpretability. Our study introduces a structural framework called SimDetector, which is a Local-Global Multi-Scale Similarity Contrast network. Specifically, the restructured and enhanced GRU module extracts more generalized local features, including long-term cyclical trends. The multi-scale sparse attention module efficiently extracts multi-scale global features with pattern information. Additionally, we modified the KL divergence to suit the characteristics of time series anomaly detection, proposing a symmetric absolute KL divergence that focuses more on overall distribution differences. The proposed method achieves results that surpass or approach the State-of-the-Art (SOTA) on multiple real-world datasets and synthetic datasets, while also significantly reducing Multiply-Accumulate Operations (MACs) and memory usage.

摘要

识别多维序贯数据中的异常对于确保在各种领域和大规模系统中的最佳性能至关重要。传统的对比方法利用从多维原始输入中提取的不同特征之间的特征相似性作为异常严重程度的指标。然而,这些方法的复杂目标函数和精心设计的模块往往会导致效率问题和缺乏可解释性。我们的研究引入了一种名为 SimDetector 的结构框架,它是一种局部-全局多尺度相似性对比网络。具体来说,重构和增强的 GRU 模块提取更具一般性的局部特征,包括长期周期性趋势。多尺度稀疏注意力模块高效地提取具有模式信息的多尺度全局特征。此外,我们修改了 KL 散度以适应时间序列异常检测的特点,提出了一种对称绝对 KL 散度,更侧重于整体分布差异。该方法在多个真实数据集和合成数据集上的结果超过或接近 SOTA,同时还显著减少了乘法累加操作 (MACs) 和内存使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验