Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China.
State Key Laboratory of Rare Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.
Nat Commun. 2024 Aug 29;15(1):7499. doi: 10.1038/s41467-024-51772-1.
Thermoelectric technology has recently emerged as a distinct therapeutic modality. However, its therapeutic effectiveness is significantly limited by the restricted temperature gradient within living organisms. In this study, we introduce a high-performance plasmonic-thermoelectric catalytic therapy utilizing urchin-like CuSe hollow nanospheres (HNSs) with a cascade of plasmonic photothermal and thermoelectric conversion processes. Under irradiation by a 1064 nm laser, the plasmonic absorption of CuSe HNSs, featuring rich copper vacancies (V), leads to a rapid localized temperature gradient due to their exceptionally high photothermal conversion efficiency (67.0%). This temperature gradient activates thermoelectric catalysis, generating toxic reactive oxygen species (ROS) targeted at cancer cells. Density functional theory calculations reveal that this vacancy-enhanced thermoelectric catalytic effect arises from a much more carrier concentration and higher electrical conductivity. Furthermore, the exceptional photothermal performance of CuSe HNSs enhances their peroxidase-like and catalase-like activities, resulting in increased ROS production and apoptosis induction in cancer cells. Here we show that the accumulation of copper ions within cancer cells triggers cuproptosis through toxic mitochondrial protein aggregation, creating a synergistic therapeutic effect. Tumor-bearing female BALB/c mice are used to evaluate the high anti-cancer efficiency. This innovative approach represents the promising instance of plasmonic-thermoelectric catalytic therapy, employing dual pathways (membrane potential reduction and thioctylated protein aggregation) of mitochondrial dysfunction, all achieved within a singular nanostructure. These findings hold significant promise for inspiring the development of energy-converting nanomedicines.
热电技术最近作为一种独特的治疗方式出现。然而,其治疗效果受到活体内受限的温度梯度的显著限制。在这项研究中,我们引入了一种基于具有级联等离子体光热和热电转换过程的海胆状 CuSe 空心纳米球(HNS)的高性能等离子体-热电催化治疗。在 1064nm 激光照射下,富铜空位(V)的 CuSe HNS 的等离子体吸收导致由于其异常高的光热转换效率(67.0%)而迅速产生局部温度梯度。这个温度梯度激活热电催化,产生针对癌细胞的有毒活性氧物质(ROS)。密度泛函理论计算表明,这种空位增强的热电催化效应源于更高的载流子浓度和更高的电导率。此外,CuSe HNS 的优异光热性能增强了其过氧化物酶样和过氧化氢酶样活性,导致癌细胞中 ROS 的产生和凋亡诱导增加。在这里,我们表明癌细胞内铜离子的积累通过有毒的线粒体蛋白聚集引发铜中毒,产生协同治疗效果。携带肿瘤的雌性 BALB/c 小鼠用于评估其高抗癌效率。这种创新方法代表了等离子体-热电催化治疗的有前途的实例,采用了线粒体功能障碍的双途径(膜电位降低和硫代化蛋白聚集),所有这些都在单个纳米结构中实现。这些发现为激发能量转换纳米药物的发展提供了重要的启示。