Suppr超能文献

集成机器学习生存框架,解析多种细胞死亡模式,预测肺腺癌预后。

Integrated machine learning survival framework to decipher diverse cell death patterns for predicting prognosis in lung adenocarcinoma.

机构信息

Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.

Second Department of Oncology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.

出版信息

Genes Immun. 2024 Oct;25(5):409-422. doi: 10.1038/s41435-024-00291-6. Epub 2024 Aug 31.

Abstract

Various forms of programmed cell death (PCD) collectively regulate the occurrence, development and metastasis of tumors. Nevertheless, a comprehensive analysis of the diverse types of PCD in lung adenocarcinoma (LUAD) is currently lacking. The study encompassed a total of 1481 genes associated with the regulation of 13 distinct PCD patterns. Ten machine learning algorithms were amalgamated into 101 combinations, from which the optimal algorithm was chosen to formulate an artificial intelligence-derived prognostic signature based on the average C-index across four multicenter cohorts. The established optimal cell death index (CDI) model emerged as an independent risk factor for overall survival, demonstrating robust and consistent performance. Notably, CDI exhibited significantly higher accuracy compared to traditional clinical variables and molecular features. It exhibited superior performance than other published models. By integrating CDI with relevant clinical features, a nomogram with excellent predictive performance was developed. LUAD patients with low CDI score had a higher immune modulators, TIDE scores and immune scores, indicating a better immunotherapy benefit. More importantly, we found that the regulation of antigen presentation is the crucial mechanism of PCD. SCG2 is a key molecule that inhibits the malignant progression of LUAD. CDI holds great potential as a robust and promising tool for enhancing clinical outcomes in patients with LUAD.

摘要

各种形式的程序性细胞死亡(PCD)共同调节肿瘤的发生、发展和转移。然而,目前缺乏对肺腺癌(LUAD)中不同类型 PCD 的综合分析。该研究共纳入了 1481 个与 13 种不同 PCD 模式调节相关的基因。将 10 种机器学习算法合并为 101 种组合,从中选择最优算法,根据四个多中心队列的平均 C 指数制定人工智能衍生的预后特征。建立的最优细胞死亡指数(CDI)模型是总生存期的独立危险因素,表现出稳健且一致的性能。值得注意的是,CDI 与传统临床变量和分子特征相比具有更高的准确性。它的性能优于其他已发表的模型。通过将 CDI 与相关临床特征相结合,开发了具有出色预测性能的列线图。CDI 评分低的 LUAD 患者具有更高的免疫调节剂、TIDE 评分和免疫评分,表明免疫治疗获益更高。更重要的是,我们发现抗原呈递的调节是 PCD 的关键机制。SCG2 是抑制 LUAD 恶性进展的关键分子。CDI 作为一种强大且有前途的工具,有望提高 LUAD 患者的临床结局。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验